Assignment \#15

Due on Friday, November 30, 2012
Read Section 6.3, Interpretations of the Derivative, in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Sections $2-1,2-2,2-3,2-4$ and $2-5$, pp. 47-54, in The Calculus Primer by William L. Schaaf.

Background and Definitions

- (Linear Approximation of a Differentiable Function). Let f denote a real valued function defined in an open interval, I, of the real line containing a point a. Assume that f is differentiable at a. The linear approximation to f at a, denoted by $L_{f}(a ; x)$, is defined by

$$
L_{f}(a ; x)=f(a)+f^{\prime}(a)(x-a), \quad \text { for } x \in \mathbb{R}
$$

The fact that f is differentiable at a implies that

$$
f(x)=L_{f}(a ; x)+E_{f}(a ; x), \quad \text { for } t \in I, \text { where } \lim _{x \rightarrow a} \frac{\left|E_{f}(a ; x)\right|}{|x-a|}=0
$$

where $E_{f}(a ; x)=f(x)-f(a)-f^{\prime}(a)(x-a)$, for $x \in I$, is the error term in the approximation $f(x) \approx f(a)+f^{\prime}(a)(x-a)$, for x in I very close to a.

- (Tangent Line to a Curve in the Plane). Let f denote a real valued function defined in an open interval, I, of the real line containing a point a. Assume that f is differentiable at a. Then, the derivative of f at a gives the slope of the tangent line to the graph of $y=f(x)$ in the $x y$-plane over the interval I. The equation of the tangent line to the graph of $y=f(x)$ at the point $(a, f(a))$ is $y=f(a)+f^{\prime}(a)(x-a)$.

Do the following problems

1. Let f denote a continuous function defined on some open interval that contains a. Suppose that $L(x)=m(x-a)+b$ is the best linear function that approximates f near a in the sense that

$$
\begin{equation*}
\lim _{x \rightarrow a} \frac{|f(x)-L(x)|}{|x-a|}=0 \tag{1}
\end{equation*}
$$

(a) Determine the value of b in the definition of $L(x)$.
(b) Show that if (1) holds true, then f is differentiable at a and determine the value of m in the definition of $L(x)$.
2. Let $f(x)=\frac{1}{x}$, for $x>0$.
(a) Give the equation to the tangent line to the graph of of $y=f(x)$ at the point $(1,1)$.
(b) Sketch the graphs of $y=f(x)$ and its tangent line at $(1,1)$ and determine the point on the x-axis where the tangent line intersects that axis.
3. Let $f(x)=\sqrt{x}$, for $x \geqslant 0$.
(a) Give the linear approximation to f at $a=1$.
(b) Use the linear approximation to f near 1 to estimate $\sqrt{0.98}$. Compare your estimate to that given by a calculator.
4. Let $f(x)=\cos x$, for $x \in \mathbb{R}$.
(a) Give the linear approximation to f at $a=\frac{\pi}{3}$.
(b) Use the linear approximation to f near $\frac{\pi}{3}$ to estimate $\cos \left(61^{\circ}\right)$. Compare your estimate to that given by a calculator.
5. Let $f(x)=x^{2 / 3}$ for all $x \in \mathbb{R}$. Explain why the tangent line to the graph of $y=f(x)$ at $(0,0)$ cannot be defined.

