Assignment \#16

Due on Monday, December 3, 2012
Read Section 6.4, Properties of the Derivative, in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Sections $3-1,3-2,3-3,3-4,3-5,3-6$ and $3-7$, pp. 60-71, in The Calculus Primer by William L. Schaaf.
Do the following problems

1. In each of the following explain why f is differentiable in the given domain and compute f^{\prime}
(a) $f(t)=2 \cos t-3 \sin t$ for all $t \in \mathbb{R}$.
(b) $f(t)=2-t^{2}+\frac{1}{\sqrt{t}}$, for $t>0$.
2. In each of the following explain why f is differentiable in the given domain and compute f^{\prime}
(a) $f(t)=2 \sin t \cos t$ for all $t \in \mathbb{R}$.
(b) $f(t)=t^{3} \cos t$, for $t>0$.
3. In each of the following explain why f is differentiable in the given domain and compute f^{\prime}
(a) $f(t)=\sin (2 t)$ for all $t \in \mathbb{R}$.
(b) $f(t)=\cos \left(t^{3}\right)$, for $t>0$.
4. In each of the following explain why f is differentiable in the given domain and compute f^{\prime}
(a) $f(x)=\frac{1}{\sqrt{x^{2}+1}}$ for all $x \in \mathbb{R}$.
(b) $f(x)=\tan (x)$, for $-\frac{\pi}{2}<x<\frac{\pi}{2}$.
5. Let $f(x)=\sqrt{1-x^{2}}$, for $-1 \leqslant x \leqslant 1$.
(a) Explain why f is not differentiable at -1 or 1 .
(b) Explain why f is differentiable in the open interval $(-1,1)$ and compute $f^{\prime}(x)$ for $-1<x<1$.
