Assignment \#17

Due on Wednesday, December 5, 2012
Read Chapter 7, Fundamental Theorems, in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 12-1, pp. 252-254, in The Calculus Primer by William L. Schaaf.
Do the following problems

1. Let $f(x)=\int_{0}^{x} \frac{1}{1+t^{4}} d t$, for all $x \in \mathbb{R}$.

Explain why f is differentiable in \mathbb{R} and compute f^{\prime}.
2. Let $F(x)=\int_{0}^{x} \frac{1}{\sqrt{1-t^{2}}} \mathrm{~d} t$ for $-1<x<1$.
(a) Use the Second Fundamental Theorem of Calculus in the notes to compute $F^{\prime}(x)$ for $-1<x<1$.
(b) Determine the values of x in $(-1,1)$ at which $F(x)$ increases with x, and those at which it decreases.
3. Let $f(t)=\left\{\begin{array}{cl}-1, & \text { if } t<0 ; \\ t, & \text { if } t \geqslant 0,\end{array}\right.$ and define $F(x)=\int_{-2}^{x} f(t) d t$, for all $x \in \mathbb{R}$.
(a) Sketch the graph of $y=f(t)$.
(b) Sketch the graph of $y=F(x)$.
(c) Show that F is not differentiable at 0 . Explain why this does not contradict the Second Fundamental Theorem of Calculus in the notes.
4. Let g be differentiable over some interval, I, and suppose that $g(t)>0$ for all $t \in I$. Define

$$
f(t)=\ln [g(t)], \quad \text { for all } t \in I
$$

(a) Explain why f is differentiable and compute f^{\prime}.
(b) Use your result from part (a) to obtain an integration formula for

$$
\int \frac{g^{\prime}(x)}{g(x)} d x
$$

5. Find a continuous function, f, defined on positive real values, and a number $a>0$ such that

$$
6+\int_{a}^{x} \frac{f(t)}{t^{2}} \mathrm{~d} t=2 \sqrt{x} \quad \text { for all } x>0
$$

