Assignment \#2

Due on Monday, September 17, 2012
Read Chapter 3, The Concept of Limit, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Background and Definitions

- The Binomial Theorem.

Let a and b denote real numbers and n a positive integer. The formula

$$
\begin{equation*}
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k} \tag{1}
\end{equation*}
$$

where $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ are called binomial coefficients, gives the expansion of the binomial $a+b$ raised to the $n^{\text {th }}$ power. The symbol $n!$ denotes the factorial of n; namely,

$$
n!=n(n-1)(n-2) \cdots 2 \cdot 1 .
$$

- The Squeeze Lemma.

Let $\left(a_{n}\right),\left(b_{n}\right)$ and $\left(c_{n}\right)$ be three sequences. Suppose that there exists a positive integer n_{1} such that

$$
a_{n} \leqslant b_{n} \leqslant c_{n}, \quad \text { for all } n \geqslant n_{1} .
$$

Assume in addition that the sequences $\left(a_{n}\right)$ and $\left(c_{n}\right)$ converge to the same limit ℓ; that is, $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=\ell$. Then, the sequence $\left(b_{n}\right)$ converges to ℓ; that is,

$$
\lim _{n \rightarrow \infty} b_{n}=\ell .
$$

Do the following problems

1. Factorials. The factorial of a positive integer, n, is defined by

$$
n!=n(n-1)(n-2) \cdots 2 \cdot 1 .
$$

The factorial of 0 is defined to be $0!=1$.
(a) Explain why $(n+1)!=(n+1) \cdot n$!.
(b) Show that $(n+1)!\geqslant 2^{n}$ for all $n \geqslant 1$.
2. Binomial Coefficients.
(a) Compute $\binom{3}{k}$ for $k=0,1,2,3$.
(b) Use the Binomial Theorem in (1) to show that

$$
\begin{equation*}
\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{n}=2^{n} \tag{2}
\end{equation*}
$$

3. The limit of the sequence $\left(\frac{1}{2^{n}}\right)$.
(a) Use the result in (2) to deduce that

$$
2^{n} \geqslant n+1, \quad \text { for all } n=1,2,3, \ldots
$$

(b) Use the Squeeze Lemma and the fact that $\lim _{n \rightarrow \infty} \frac{1}{n+1}=0$ to deduce that

$$
\lim _{n \rightarrow \infty} \frac{1}{2^{n}}=0
$$

4. Show that the sequence $\left(\frac{1}{n^{2}}\right)$ converges and compute its limit.

Suggestion: Observe that $n^{2} \geqslant n$ for all $n \geqslant 1$ and apply the Squeeze Lemma.
5. Use the limit facts discussed in the lecture notes and the results of the previous problems (if necessary) to compute the following limits.
(a) $\lim _{n \rightarrow \infty} \frac{1+n-2 n^{2}}{n^{2}}$.
(b) $\lim _{n \rightarrow \infty} \frac{n^{2}+1}{2-n+3 n^{2}}$.

