Assignment #2

Due on Monday, September 17, 2012

Read Chapter 3, *The Concept of Limit*, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Background and Definitions

• The Binomial Theorem.

Let a and b denote real numbers and n a positive integer. The formula

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k},\tag{1}$$

where $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ are called binomial coefficients, gives the expansion of the binomial a + b raised to the n^{th} power. The symbol n! denotes the factorial of n; namely,

$$n! = n(n-1)(n-2)\cdots 2\cdot 1.$$

• The Squeeze Lemma.

Let (a_n) , (b_n) and (c_n) be three sequences. Suppose that there exists a positive integer n_1 such that

$$a_n \leqslant b_n \leqslant c_n$$
, for all $n \ge n_1$.

Assume in addition that the sequences (a_n) and (c_n) converge to the same limit ℓ ; that is, $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = \ell$. Then, the sequence (b_n) converges to ℓ ; that is,

$$\lim_{n \to \infty} b_n = \ell.$$

Do the following problems

1. Factorials. The factorial of a positive integer, n, is defined by

$$n! = n(n-1)(n-2)\cdots 2\cdot 1.$$

The factorial of 0 is defined to be 0! = 1.

- (a) Explain why $(n + 1)! = (n + 1) \cdot n!$.
- (b) Show that $(n+1)! \ge 2^n$ for all $n \ge 1$.

2. Binomial Coefficients.

(a) Compute
$$\begin{pmatrix} 3\\ k \end{pmatrix}$$
 for $k = 0, 1, 2, 3$.

(b) Use the Binomial Theorem in (1) to show that

$$\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} = 2^n.$$
 (2)

3. The limit of the sequence $\left(\frac{1}{2^n}\right)$.

(a) Use the result in (2) to deduce that

$$2^n \ge n+1$$
, for all $n = 1, 2, 3, \dots$

(b) Use the Squeeze Lemma and the fact that $\lim_{n\to\infty} \frac{1}{n+1} = 0$ to deduce that

$$\lim_{n \to \infty} \frac{1}{2^n} = 0.$$

4. Show that the sequence $\left(\frac{1}{n^2}\right)$ converges and compute its limit. Suggestion: Observe that $n^2 \ge n$ for all $n \ge 1$ and apply the Squeeze Lemma.

- 5. Use the limit facts discussed in the lecture notes and the results of the previous problems (if necessary) to compute the following limits.
 - (a) $\lim_{n \to \infty} \frac{1 + n 2n^2}{n^2}$. (b) $\lim_{n \to \infty} \frac{n^2 + 1}{2 - n + 3n^2}$.