Assignment \#3

Due on Wednesday, September 19, 2012

Read Section 3.2, Limits of Functions, in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read on The Limit Concept, pp. 32-45, in The Calculus Primer by William L. Schaaf.

Background and Definitions

- Radian Measure. Figure 1 shows a sketch of a circle of radius R centered at the origin in the $x y$-plane $\left(x^{2}+y^{2}=R^{2}\right)$. A point moving along the circle starts at $(R, 0)$ and moves in the counterclockwise sense along the circle with unit speed. Suppose that at some time t the point is at location P on the circle. Denote the

Figure 1: Unit Circle
distance traveled by the point by s. The radian measure of the angle, θ, made by the line segment from the origin to P with the positive x-axis is defined by

$$
\begin{equation*}
\theta=\frac{s}{R}, \quad \text { in radians. } \tag{1}
\end{equation*}
$$

Note that since s and R have the same unit of length, the quantity θ defined in (1) is dimensionless; in other words, it is a real number.

- The Sine and Cosine Functions. Figure 2 shows the unit circle in the $x y$-plane, whose equation is given by $x^{2}+y^{2}=1$. Let t denote the radian measure of the angle that the segment from the origin to P makes with the positive x-axis.

Figure 2: Graph of $x^{2}+y^{2}=R^{2}$

The trigonometric functions cos and sin give the cartesian coordinates of the point P; that is, P has coordinates $(\cos t, \sin t)$.

Do the following problems

1. Radian Measure. Given that the total distance traveled by the point P in Figure 1 when it goes once around the circle is $2 \pi R$, compute the radian measure of the angle θ when P is at the points with cartesian coordinates $(R, 0),(0, R)$, $(-R, 0)$, and $(0,-R)$.
2. Sine and Cosine Functions. Refer to the unit circle in Figure 2.
(a) Give a justification to the trigonometric identity

$$
\cos ^{2} t+\sin ^{2} t=1, \quad \text { for all } t
$$

(b) Justify the statements

$$
\cos (-t)=\cos t, \quad \text { for all } t
$$

and

$$
\sin (-t)=-\sin t, \quad \text { for all } t
$$

3. Sine and Cosine Functions (continued). Refer to the unit circle in Figure 2. Give the Cartesian coordinates of the points P for which the line segment from the origin to P makes an angle t wit the positive x-axis, where t is $\pi / 6, \pi / 4$ and $\pi / 3$.

Figure 3: Unit Circle
4. The Tangent Function. Refer to the unit circle in Figure 3. The point labeled Q in Figure 3 is the intersection of the ray $\overrightarrow{O P}$ and the line tangent to the circle at $(1,0)$. Let $(1, \tan t)$ denote the coordinates of Q.
(a) Show that

$$
\begin{equation*}
\tan t=\frac{\sin t}{\cos t}, \quad \text { as long as } \cos t \neq 0 \tag{2}
\end{equation*}
$$

(b) Give the domain of definition of the tangent function, tan, given by (2).
5. The Tangent Function (Continued). Refer to the definition of the tangent function, tan, given by (2).
Compute $\tan t$ for t being $0, \pi / 6, \pi / 4$ and $\pi / 3$ in radians.

