Assignment \#5

Due on Wednesday, September 26, 2012
Read Section 3.2, Limits of Functions, in the class lecture notes at
http://pages.pomona.edu/~ajr04747/
Read on The Limit Concept, pp. 32-45, in The Calculus Primer by William L. Schaaf.

Background and Definitions

The Squeeze Lemma. Let f, g and h denote a functions whose domains consist of union of intervals that either contain a, or a is an end-point of some of the intervals. (Note that a might or might not be in the domains of f, g or h). Suppose that there exists a positive number δ such that

$$
f(t) \leqslant g(t) \leqslant h(t), \quad \text { for }|t-a|<\delta,
$$

and t is in the domains of f, g and h. Assume in addition that the limits of f and h as t approaches a exist and that $\lim _{t \rightarrow a} f(t)=\lim _{t \rightarrow a} h(t)=L$. Then, the limit of g as t approaches a exists and $\lim _{t \rightarrow a} g(t)=L$.

Do the following problems

1. Refer to the sketch of the unit circle in Figure 1. Derive the inequalities

Figure 1: Unit Circle

$$
-1 \leqslant \cos t \leqslant 1 \quad \text { and } \quad-1 \leqslant \sin t \leqslant 1, \quad \text { for all } t .
$$

2. Refer to the sketch of the unit circle in Figure 1.
(a) Derive the inequality

$$
\begin{equation*}
|\sin t| \leqslant|t|, \quad \text { for }|t|<\frac{\pi}{2} \tag{1}
\end{equation*}
$$

(b) Use the inequality in (1) and the Squeeze Lemma to show that

$$
\begin{equation*}
\lim _{t \rightarrow 0} \sin t=0 \tag{2}
\end{equation*}
$$

3. Use the trigonometric identities

$$
\begin{equation*}
\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta \tag{4}
\end{equation*}
$$

to derive the identity

$$
\begin{equation*}
\cos (\alpha+\beta)-\cos (\alpha-\beta)=-2 \sin \alpha \sin \beta \tag{5}
\end{equation*}
$$

Suggestion: Subtract the equation in (4) from that in (3).
4. Use the identity in (5) to derive the identity

$$
\begin{equation*}
\cos (t)-\cos (a)=-2 \sin \left(\frac{t+a}{2}\right) \sin \left(\frac{t-a}{2}\right) \tag{6}
\end{equation*}
$$

Suggestion: Set $t=\alpha+\beta, a=\alpha-\beta$, and solve for α and β in terms of t and a.
5. Computing $\lim _{t \rightarrow a} \cos t$.
(a) Use the identity in (6) and the results in Problems 1 and 2 to derive the inequality

$$
\begin{equation*}
|\cos (t)-\cos (a)| \leqslant|t-a|, \quad \text { for }|t-a|<\pi \tag{7}
\end{equation*}
$$

(b) Use (7) and the Squeeze Lemma to deduce that

$$
\lim _{t \rightarrow a} \cos t=\cos a, \quad \text { for all } a
$$

