Assignment \#6

Due on Friday, September 28, 2012
Read Section 4.1, Continuous Functions, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Background and Definitions

- Definition of Continuous Function. Let f be a real-valued function defined in a domain containing a. We say that f is continuous at a if

$$
\lim _{t \rightarrow a}|f(t)-f(a)|=0
$$

If f is continuous at every point in its domain, we say that f is continuous on that domain.

- Absolute Value. For any real number, x, the absolute value of x, denoted by $|x|$, is defined by $|x|=\left\{\begin{aligned} x & \text { if } x \geqslant 0 ; \\ -x & \text { if } x<0 .\end{aligned}\right.$

Do the following problems

1. The Triangle Inequality.
(a) Show that for any real numbers, x and y,

$$
\begin{equation*}
|x+y| \leqslant|x|+|y| . \tag{1}
\end{equation*}
$$

Suggestion: Look at cases: (i) $x \leqslant y<0$; (ii) $x<0 \leqslant y$; (iii) $0 \leqslant x \leqslant y$.
(b) Use (1) to show that, for any real numbers x and y,

$$
\begin{equation*}
\| x|-|y|| \leqslant|x-y| \tag{2}
\end{equation*}
$$

2. The Absolute Value Function. Define the real valued function f by $f(t)=|t|$ for all $t \in \mathbb{R}$; in other words, $f(t)=\left\{\begin{array}{cl}t & \text { if } t \geqslant 0 ; \\ -t & \text { if } t<0 .\end{array}\right.$
(a) Sketch the graph of $y=f(t)$.
(b) Use the inequality in (2) to show that f is continuous on \mathbb{R} and deduce that

$$
\lim _{t \rightarrow a}|t|=|a|,
$$

for all $a \in \mathbb{R}$.
3. Let $f(t)=\left|t^{2}-1\right|$ for t in \mathbb{R}.
(a) Use the result of Problem 3 and facts about continuous functions presented in the class lecture notes to deduce that f is continuous on \mathbb{R}.
(b) Sketch the graph of $y=f(t)$.
4. The Square Root Function. Set $f(t)=\sqrt{t}$ for $t \geqslant 0$.
(a) Show that, if x and y are positive real numbers with $x<y$, then $\sqrt{x}<\sqrt{y}$. Suggestion: Use algebra to derive the equality

$$
\begin{equation*}
\sqrt{y}-\sqrt{x}=\frac{1}{\sqrt{y}+\sqrt{x}}(y-x) . \tag{3}
\end{equation*}
$$

Observe that if the right-hand side of (3) is positive, then the left-hand side of (3) is also positive.
(b) Deduce from part (a) that $f(t)$ increases as t increases over positive values and sketch the graph of $y=f(t)$.
5. The Square Root Function (continued). Set $f(t)=\sqrt{t}$ for $t \geqslant 0$.
(a) Use algebra to show that, for $a>0$,

$$
\begin{equation*}
|\sqrt{t}-\sqrt{a}| \leqslant \frac{1}{\sqrt{a}}|t-a|, \quad \text { for } t \geqslant 0 \tag{4}
\end{equation*}
$$

Deduce (4) and the Squeeze Lemma that

$$
\lim _{t \rightarrow a} \sqrt{t}=\sqrt{a}, \quad \text { for } a>0
$$

Therefore, f is continuous at a for $a>0$.
(b) Let $\varepsilon>0$ be an arbitrary positive number and put $\delta=\varepsilon^{2}$. Show that

$$
\begin{equation*}
0 \leqslant t<\delta \quad \text { implies that } \quad 0 \leqslant \sqrt{t}<\varepsilon \tag{5}
\end{equation*}
$$

Explain your reasoning.
(c) Explain why (5) says that \sqrt{t} can be made arbitrarily small by making $t>0$ sufficiently small. Deduce that

$$
\lim _{t \rightarrow 0^{+}} \sqrt{t}=0
$$

Therefore, f is continuous at 0 .

