Assignment \#7

Due on Wednesday, October 17, 2012
Read Section 5.1, The Area Problem, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Background and Definitions

- The Area Function for Non-Negative Functions. Let f denote a non-negative, real-value, piece-wise continuous function, and a a point in the domain of f contained in an interval. Suppose that $x>a$ and consider the region, R, in the $t y$-plane lying above the t-axis, below the graph of $y=f(t)$, and between the vertical lines $t=a$ and $t=x$. We denote the area of that region by $A_{f}(a ; x)$. If $x<a$, we set $A_{f}(a ; x)$ to be the negative of the area of the region R. We call $A_{f}(a ; x)$ the area function of f from a to x.
- The Area Function for Sign-Changing Functions. Let f denote a piecewise continuous real-value function, and a a point in the domain of f contained in an interval. The area function of f from a to x is the number obtained by computing the area of the region, R, in the $t y$-plane bounded by t-axis, the graph of $y=f(t)$, and between the vertical lines $t=a$ and $t=x$ and following the following sign convention:
(i) area of regions below the t-axis are taken to be negative;
(ii) x is to the right of a, the result of the area calculation is multiplied by +1 ; when x is to the left of a the result is multiplied by -1 .

Do the following problems

1. Let $f(t)=|t-2|$ for all $t \in \mathbb{R}$ and $a=-1$.
(a) Sketch the graph of $y=f(t)$ in the $t y$-plane.
(b) Using your knowledge of areas of triangles, compute $A_{f}(a ; x)$ and sketch the graph of A_{f} as function of x in the $x y$-plane.
2. Let $f(t)=\left\{\begin{array}{ll}0, & \text { for } t<2 ; \\ 1, & \text { for } t \geqslant 2,\end{array}\right.$ and $a=-1$.
(a) Sketch the graph of $y=f(t)$ in the $t y$-plane.
(b) Using your knowledge of areas of rectangles, compute $A_{f}(a ; x)$ and sketch the graph of A_{f} as function of x in the $x y$-plane.

Figure 1: Circular Sector
3. Area of a Circular Sector. Figure 1 shows the sector of a circle of radius r subtended by an angle of α from its center. Use the procedure outlined in the class lecture notes to come up with a formula for computing the are of the sector in terms of r and the angle α.
4. Let f denote the function defined by $f(t)=\sqrt{1-t^{2}}$ for $-1 \leqslant t \leqslant 1$.
(a) Sketch the graph of $y=f(t)$ in the $t y$-plane.
(b) Use the result of Problem 3 and your knowledge of areas of triangles in order to compute $A_{f}(0 ; x)$ for $-1 \leqslant x \leqslant 1$.
5. Let f be a real valued function defined on the real line by the formula

$$
f(t)= \begin{cases}0, & \text { if } t<-1 \\ t+1, & \text { if }-1 \leqslant t<1 \\ 2, & \text { if } t \geqslant 1\end{cases}
$$

Let $A_{f}(-1 ; x)$ denote the area function for f from -1 to x. Give a formula for computing $A_{f}(-1 ; x)$ for all values of x.

