Assignment \#8

Due on Wednesday, October 24, 2012
Read Section 5.1, The Area Problem, in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Sections 15-1, 15-2 and 15-3, pp. 318-321, in The Calculus Primer by William L. Schaaf.

Background and Definitions

- Theorem (Existence of the Area Function). Let f denote a piecewise continuous function defined on an interval containing a point a. Then, for any x in that interval, $A_{f}(a: x)$ exists. Furthermore, for the case $x>a, A_{f}(a: x)$ can be obtained as a limit as n tends to infinity of the sequence of sums of the form

$$
\begin{equation*}
\sum_{k=1}^{n} f\left(\tau_{k}\right)\left(t_{k}-t_{k-1}\right) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\left[t_{o}, t_{1}\right],\left[t_{1}, t_{2}\right], \ldots,\left[t_{n-2}, t_{n-1}\right],\left[t_{n-1}, t_{n}\right], \quad \text { with } t_{o}=a \text { and } t_{n}=x \tag{2}
\end{equation*}
$$

is any subdivision of the interval $[a, x]$ with the property that the largest length of the intervals in (2) tends to 0 as n tends to infinity, and τ_{k} is any point in the subinterval $\left[t_{k-1}, t_{k}\right]$.

- Notation (Riemann Sums and the Riemann Integral). The sums in (1) are called Riemann sums. The area function, $A_{f}(a ; x)$, when it exists is usually denoted by the the symbol $\int_{a}^{x} f(t) d t$, and is referred to as the Riemann integral of f over the interval $[a, x]$.

Do the following problems

1. Let I denote an interval where f is defined and piecewise continuous. Explain why the following properties of the area function are true.
(a) For any real number a in the interval $I, A_{f}(a ; a)=0$.
(b) For any real number $a b$ and c in the interval I,

$$
A_{f}(a ; c)=A_{f}(a ; b)+A_{f}(b ; c) .
$$

2. Let I denote an interval where f is defined and piecewise continuous. Explain why the following properties of the area function are true.
(a) For any real numbers a and b in the interval $I, A_{f}(a ; b)=-A_{f}(b ; a)$.
(b) For any real numbers a, b and c in the interval I,

$$
A_{f}(a ; b)=A_{f}(c ; b)-A_{f}(c ; a) .
$$

Deduce therefore that

$$
\int_{a}^{b} f(t) d t=A_{f}(c ; b)-A_{f}(c ; a)
$$

where c is any point in the interval
3. Let $f(t)=|t|$ for all $t \in \mathbb{R}$.
(a) Compute the area function $A_{f}(0 ; x)$ for all $x \in \mathbb{R}$ and sketch the graph of $y=A_{f}(0 ; x)$.
(b) Use the formula obtained in Part (a) and the result from Problem 3(b) to get a formula for computing

$$
\int_{a}^{x}|t| d t
$$

for any a and x in \mathbb{R}.
4. Let I denote an interval where f is defined and piecewise continuous. Explain why the following property of the area function is true.

$$
\begin{equation*}
\left|A_{f}(a ; x)\right| \leqslant A_{|f|}(a ; x), \quad \text { for all } a \text { and } x \text { in } I \text { with } a \leqslant x ; \tag{3}
\end{equation*}
$$

that is, the absolute value of the area function of f over $[a, x]$ is at most the area function of the absolute value of f over $[a, x]$.
Give an example in which strict inequality in (3) holds true.
Give an example in which equality in (3) holds true.
5. Let I denote an interval where f is defined and piecewise continuous, and let $a \in I$.
(a) Suppose $f(t)>0$ for all t in I. Explain why $A_{f}(a ; x)$ increases as x increases over the interval I.
(b) Suppose $f(t)<0$ for all t in I. Explain why $A_{f}(a ; x)$ decreases as x increases over the interval I.

