Exam 1

Friday, October 5, 2012
Name: \qquad
Show all significant work and justify all your answers. This is a closed book exam. Use your own paper and/or the paper provided by the instructor. You have 50 minutes to work on the following 4 problems. Relax.

1. Suppose you are driving along the I-10 at a constant speed going east. You pass the Claremont exit at Indian Hill Boulevard (Exit 47) at 2:00 PM and the Vineyard exit in Ontario, about seven miles away, six minutes later.
(a) Express the distance you travel, $s(t)$ (in miles), from Exit 47 in terms of the time elapsed, t (in hours), from 2:00 PM.
(b) Sketch the graph of s as a function of t, where $s(t)$ is given by the formula found in part (a). Describe the graph of s.
2. Let a denote a real number satisfying $|a|<1$ and put $c=\frac{|a|}{1-|a|}$.
(a) Compute $\lim _{n \rightarrow \infty} \frac{c}{n}$. Explain your calculations.
(b) Use the inequality $|a|^{n} \leqslant \frac{c}{n}$, for $n=1,2,3, \ldots$, to compute $\lim _{n \rightarrow \infty} a^{n}$, for $|a|<1$. Explain your calculations.
3. Let f denote a real valued function defined in some interval that contains a point a.
(a) State precisely what it means for f to be continuous at a.
(b) Let $f(t)=\left\{\begin{array}{cl}\frac{t^{2}}{\sin t}, & \text { if } t \neq 0 ; \\ c, & \text { if } t=0 .\end{array}\right.$

Determine the value of c that will make the function f continuous at 0 . Explain your answer and justify any assertion you make.
4. Let $f(t)= \begin{cases}2-t & \text { if } t<2 ; \\ t-1 & \text { if } t \geqslant 2 .\end{cases}$
(a) Explain why f is continuous everywhere except at 2 . Justify your answer.
(b) Describe the type of discontinuity that f has at 2 and explain why it cannot be removed by redefining f at 2 .

