Exam 2

Wednesday, November 7, 2012

Name: _

Show all significant work and justify all your answers. This is a closed book exam. Use your own paper and/or the paper provided by the instructor. You have 50 minutes to work on the following 3 problems. Relax.

1. Figure 1 shows a sketch of the graph of a function, f, defined over the interval

Figure 1: Sketch of graph of f

[-3,3] on the *t*-axis. Define the area function $F(x) = \int_{-3}^{x} f(t) dt$, for x in the interval [-3,3].

- (a) Determine values of x in the interval [-3,3] for which (i) F(x) increases; (ii) F(x) decreases. Justify your answers.
- (b) Assume that the regions labeled R_1 and R_2 in Figure 1 have exactly the same area. Sketch the graph of y = F(x) over the interval [-3,3] on the *x*-axis.
- 2. For each of the following functions, f, evaluate $F(x) = \int_a^x f(t) dt$, for the given point a.
 - (a) $f(t) = 3 + \cos t + 2\sin t$, for all $t \in \mathbf{R}$, and a = 0. (b) $f(t) = t + \frac{1}{t}$, for t > 0, and a = 1. Give the domain of F in this case.
- 3. Compute the area of the region in the ty-plane that lies below the curve given by $y = 2 - t^2$ and above the graph of $y = t^2$.