Exam 2

Wednesday, November 7, 2012
Name: \qquad
Show all significant work and justify all your answers. This is a closed book exam. Use your own paper and/or the paper provided by the instructor. You have 50 minutes to work on the following 3 problems. Relax.

1. Figure 1 shows a sketch of the graph of a function, f, defined over the interval

Figure 1: Sketch of graph of f
$[-3,3]$ on the t-axis. Define the area function $F(x)=\int_{-3}^{x} f(t) d t$, for x in the interval $[-3,3]$.
(a) Determine values of x in the interval $[-3,3]$ for which (i) $F(x)$ increases; (ii) $F(x)$ decreases. Justify your answers.
(b) Assume that the regions labeled R_{1} and R_{2} in Figure 1 have exactly the same area. Sketch the graph of $y=F(x)$ over the interval $[-3,3]$ on the x-axis.
2. For each of the following functions, f, evaluate $F(x)=\int_{a}^{x} f(t) d t$, for the given point a.
(a) $f(t)=3+\cos t+2 \sin t$, for all $t \in \mathbf{R}$, and $a=0$.
(b) $f(t)=t+\frac{1}{t}$, for $t>0$, and $a=1$. Give the domain of F in this case.
3. Compute the area of the region in the $t y$-plane that lies below the curve given by $y=2-t^{2}$ and above the graph of $y=t^{2}$.

