Review Problems for Exam 2

1. Let $f(t)=0$ for $t<0$, and $f(t)=1+t$ for $t \geqslant 0$, and let $A_{f}(0 ; x)$ denote the area under the graph of f from 0 to x.
(a) Give a formula for computing $A_{f}(0 ; x)$ for all values of x.
(b) Sketch the graphs of $y=f(t)$ and $y=A_{f}(0 ; x)$.
2. Let $f(t)=\sqrt{t^{4}+1}$ for all $t \in \mathbb{R}$, and define $F(x)=\int_{0}^{x} f(t) d t$, for all $x \in \mathbb{R}$.
(a) Explain why $F(x)$ increases as x increases.
(b) Determine the values of x for which F is negative and those for which F is positive. Justify your answers.
3. Let $f(t)=|t|+1$ for all $t \in \mathbb{R}$. Sketch the graph of $y=f(x)$ and evaluate the area under the graph of f from -3 to 3 .
4. Let $f(t)=\sqrt{1-(t-1)^{2}}$. Sketch the graph of $y=f(t)$ and evaluate the area under the graph of f from 0 to 1 that lies above the t-axis.
5. Compute the area of the region in the $t y$-plane that lies below the line $y=t+2$ and above the graph of $y=t^{2}$.
6. Find the area of the region under the graph of $y=\frac{1}{\sqrt{t}}$ and above the t-axis from $t=1$ to $t=4$.
7. The area, A, of the circular sector shown in the figure

is given by the formula $A=\frac{1}{2} \theta r^{2}$, where θ is given in radians.
Use this formula to evaluate the integral $\int_{0}^{1} \sqrt{4-t^{2}} d t$.
8. Let f be a function defined by $f(t)= \begin{cases}0, & \text { if } t<-1 \\ \sqrt{1-t^{2}}, & \text { if }-1 \leqslant t<0 ; \\ 1 ; & \text { if } t \geqslant 0 .\end{cases}$ Evaluate the area function $F(x)=\int_{-1}^{x} f(t) d t$, for all $x \in \mathbb{R}$, and sketch the graph of $y=F(x)$.
