Solutions to Review Problems for Exam 2

1. Let $f(t)=0$ for $t<0$, and $f(t)=1+t$ for $t \geqslant 0$, and let $A_{f}(0 ; x)$ denote the area under the graph of f from 0 to x.
(a) Give a formula for computing $A_{f}(0 ; x)$ for all values of x.

Solution: Figure 1 shows a sketch of the graph of f.

Figure 1: Sketch of graph of f

For $x<0$,

$$
A_{f}(0 ; x)=\int_{0}^{x} 0 d t=0
$$

and, for $x \geqslant 0$,

$$
\begin{aligned}
A_{f}(0 ; x) & =\int_{0}^{x}(1+t) d t \\
& =\left[t+\frac{1}{2} t^{2}\right]_{0}^{x} \\
& =x+\frac{1}{2} x^{2}
\end{aligned}
$$

We therefore have that

$$
A_{f}(0 ; x)= \begin{cases}0, & \text { if } x<0 \\ x+\frac{1}{2} x^{2}, & \text { if } x \geqslant 0\end{cases}
$$

Figure 2: Sketch of graph of $y=A_{f}(0 ; x)$
(b) Sketch the graphs of $y=f(t)$ and $y=A_{f}(0 ; x)$.

Solution: A sketch of the graph of $y=f(t)$ is shown in Figure 1. A sketch of the graph of $y=A(0 ; x)$ is shown in Figure 2.
2. Let $f(t)=\sqrt{t^{4}+1}$ for all $t \in \mathbb{R}$, and define $F(x)=\int_{0}^{x} f(t) d t$ for all $x \in \mathbb{R}$.
(a) Explain why $F(x)$ increases as x increases.

Solution: Note that $f(t)=\sqrt{t^{4}+1} \geqslant 1>0$, for all $t \in \mathbb{R}$; this, $f(t)$ is strictly positive for all t. Therefore, $F(x)$ increases with increasing x.
(b) Determine the values of x for which F is negative and those for which F is positive. Justify your answers.
Solution: By the Sign Convention 1, since $f(t)$ is positive for all $t, F(x)>$ 0 for $x>0$, and $F(x)<0$ for $x<0$.
3. Let $f(t)=|t|+1$ for all $t \in \mathbb{R}$. Sketch the graph of $y=f(x)$ and evaluate the area under the graph of f from -3 to 3 .

Solution: Figure 3 shows a sketch of the graph of f.
Note that the region, R, in question here is symmetric with respect to the y-axis. It then follows that

$$
\operatorname{area}(R)=2 \int_{0}^{3} f(t) d t
$$

so that

$$
\begin{equation*}
\operatorname{area}(R)=2 \int_{0}^{3}(t+1) d t \tag{1}
\end{equation*}
$$

Figure 3: Sketch of graph of f
since $|t|=t$ for $t \geqslant 0$.
Evaluating the integral on the right-hand side of (1) we obtain

$$
\begin{aligned}
\operatorname{area}(R) & =2\left[\frac{1}{2} t^{2}+t\right]_{0}^{3} \\
& =2\left(\frac{9}{2}+3\right) \\
& =15 .
\end{aligned}
$$

4. Let $f(t)=\sqrt{1-(t-1)^{2}}$. Sketch the graph of $y=f(t)$ and evaluate the area under the graph of f from 0 to 1 that lies above the t-axis.
Solution: A sketch of the graph of $y=f(t)$ is shown in Figure 4. The figure

Figure 4: Sketch of graph of f
also shows the region, R, under consideration in this problem. Note that R is
a quarter of a disc of radius 1 , so that

$$
\operatorname{area}(R)=\frac{\pi}{4}
$$

5. Compute the area of the region in the $t y$-plane that lies below the line $y=t+2$ and above the graph of $y=t^{2}$.
Solution: Figure 5 shows a sketch of the region, R, under consideration in this problem. The region R lies below the graph of the line $y=t+2$ and above

Figure 5: Sketch of region R
the graph of the parabola $y=t^{2}$ over an interval determined by the points of intersection of the line and the parabola. To find the points of intersection, solve the equation

$$
t^{2}=t+2
$$

to get $t=-1$ and $t=2$. These points are labeled in Figure 5 . We therefore get that

$$
\begin{equation*}
\operatorname{area}(R)=\int_{-1}^{2}\left[t+2-t^{2}\right] d t \tag{2}
\end{equation*}
$$

Evaluating the integral on the right-hand side of (2) we get

$$
\operatorname{area}(R)=\left[\frac{1}{2} t^{2}+2 t-\frac{1}{3} t^{3}\right]_{-1}^{2}=2+4-\frac{8}{3}-\left(\frac{(-1)^{2}}{2}+2(-1)-\frac{(-1)^{3}}{3}\right)
$$

so that

$$
\operatorname{area}(R)=\frac{9}{2}
$$

6. Find the area of the region under the graph of $y=\frac{1}{\sqrt{t}}$ and above the t-axis from $t=1$ to $t=4$.
Solution: Figure 6 shows a sketch of the region R under consideration in this problem.

Figure 6: Sketch of region R

We have that

$$
\begin{equation*}
\operatorname{area}(R)=\int_{1}^{4} \frac{1}{\sqrt{t}} d t \tag{3}
\end{equation*}
$$

Writing $\frac{1}{\sqrt{t}}=t^{-1 / 2}$, we evaluate the integral on the right-hand side of (3) to get

$$
\operatorname{area}(R)=\left[\frac{1}{-\frac{1}{2}+1} t^{-\frac{1}{2}+1}\right]_{1}^{4}
$$

or

$$
\operatorname{area}(R)=[2 \sqrt{t}]_{1}^{4}=2 \sqrt{4}-2=2
$$

7. The area, A, of the circular sector shown in the figure

is given by the formula $A=\frac{1}{2} \theta r^{2}$, where θ is given in radians.
Use this formula to evaluate the integral $\int_{0}^{1} \sqrt{4-t^{2}} d t$.
Solution: A sketch of the graph of $f(t)=\sqrt{4-t^{2}}$, for $-2 \leqslant t \leqslant 2$, is shown in Figure 7. The definite integral $\int_{0}^{1} \sqrt{4-t^{2}} d t$ is the sum of the areas of

Figure 7: Sketch of graph of $y=\sqrt{4-t^{2}}$, for $-2 \leqslant t \leqslant 2$
the circular sector R_{1}, pictured in the figure, and the triangle R_{2}, also pictured in the figure. The circular sector R_{1} in Figure 7 is subtended by an angle, θ, satisfying

$$
\sin \theta=\frac{1}{2}
$$

so that

$$
\theta=\frac{\pi}{6}
$$

in radians. We then have that

$$
\int_{0}^{1} \sqrt{4-t^{2}} d t=\operatorname{area}\left(R_{1}\right)+\operatorname{area}\left(R_{2}\right)=\frac{1}{2} \cdot \frac{\pi}{6}(2)^{2}+\frac{1}{2}(1) \sqrt{3},
$$

so that

$$
\int_{0}^{1} \sqrt{4-t^{2}} d t=\frac{\pi}{3}+\frac{\sqrt{3}}{2}
$$

8. Let f be a function defined by $f(t)= \begin{cases}0, & \text { if } t<-1 \\ \sqrt{1-t^{2}}, & \text { if }-1 \leqslant t<0 ; \\ 1 ; & \text { if } t \geqslant 0 .\end{cases}$

Evaluate the area function $F(x)=\int_{-1}^{x} f(t) d t$, for all $x \in \mathbb{R}$, and sketch the graph of $y=F(x)$.
Solution: A sketch of the graph of f is shown in Figure 8.

Figure 8: Sketch of graph of f

For $x<-1$, we compute

$$
\begin{equation*}
F(x)=\int_{-1}^{x} 0 d t=0 \tag{4}
\end{equation*}
$$

For $-1 \leqslant x<0$, refer to the region R in Figure 8. In this case we have that

$$
\begin{equation*}
\int_{-1}^{x} f(t) d t=\operatorname{area}(R) \tag{5}
\end{equation*}
$$

where area (R) is $\frac{\pi}{4}$ minus the area of a circular sector of radius 1 subtended by an angle, θ, given by $\sin \theta=-x$ plus the area of a triangle of base $-x$ and height $\sqrt{1-x^{2}}$. We then have that

$$
\operatorname{area}(R)=\frac{\pi}{4}-\left(\frac{1}{2} \arcsin (-x)+\frac{1}{2}(-x) \sqrt{1-x^{2}}\right)
$$

so that

$$
\begin{equation*}
\operatorname{area}(R)=\frac{\pi}{4}+\frac{1}{2} \arcsin (x)+\frac{1}{2} x \sqrt{1-x^{2}}, \quad \text { for }-1 \leqslant x<0 \tag{6}
\end{equation*}
$$

It follows from (5) and (6) that

$$
\begin{equation*}
F(x)=\frac{\pi}{4}+\frac{1}{2} \arcsin (x)+\frac{1}{2} x \sqrt{1-x^{2}}, \quad \text { for }-1 \leqslant x<0 . \tag{7}
\end{equation*}
$$

Figure 9: Sketch of graph of f

For the case $x>0$, refer to Figure 9. In this case,

$$
\begin{equation*}
\int_{-1}^{x} f(t) d t=\operatorname{area}\left(R_{1}\right)+\operatorname{area}\left(R_{2}\right) \tag{8}
\end{equation*}
$$

where R_{1} is the the quarter of the circular disc depicted in Figure 9, and R_{2} is the rectangle of width x and height 1 , also depicted in the figure. It then follows from (8) that

$$
\int_{-1}^{x} f(t) d t=\frac{\pi}{4}+x
$$

Consequently,

$$
\begin{equation*}
F(x)=\frac{\pi}{4}+x, \quad \text { for } x \geqslant 0 \tag{9}
\end{equation*}
$$

Combining (4), (7) and (9) we have that

$$
F(x)= \begin{cases}0, & \text { for } x<-1 \tag{10}\\ \frac{\pi}{4}+\frac{1}{2} \arcsin (x)+\frac{1}{2} x \sqrt{1-x^{2}}, & \text { for }-1 \leqslant x<0 \\ \frac{\pi}{4}+x, & \text { for } x \geqslant 0\end{cases}
$$

A sketch of the graph of $y=F(x)$, where F is as given in (10) is shown in Figure 10.

Figure 10: Sketch of graph of F

