Exam 3

Friday, December 7, 2012
Name: \qquad
Show all significant work and justify all your answers. This is a closed book exam. Use your own paper and/or the paper provided by the instructor. You have 90 minutes to work on the following 5 problems. Relax.

1. Let $f: I \rightarrow \mathbf{R}$ denote a real valued function defined on some open interval, I, of real numbers. Let a denote any point in I.
(a) State precisely what it means for f to be differentiable at a.
(b) Use the definition of the derivative for an appropriately chosen function to show that the limit

$$
\lim _{h \rightarrow 0} \frac{\cos h-1}{h}
$$

exists, and compute the limit. Explain your reasoning.
2. Let f denote a real valued function defined in some open interval I and let $a \in I$. Let F denote the area function

$$
F(x)=\int_{a}^{x} f(t) d t, \quad \text { for } x \in I
$$

(a) State precisely what the Second Fundamental Theorem of Calculus says about F.
(b) Let $f(t)=\left\{\begin{aligned} 1, & \text { if } t<0 ; \\ 2 t, & \text { if } t \geqslant 0,\end{aligned}\right.$ and put $F(x)=\int_{0}^{x} f(t) d t$, for all $x \in \mathbf{R}$.

Compute $F(x)$, for $x \in \mathbf{R}$, and sketch the graph of $y=F(x)$.
(c) Show that the function F defined in part (b) is not differentiable at 0 . Explain why this does not contradict the Second Fundamental Theorem of Calculus.
3. Let $f(x)=\sqrt{x}$, for $x \geqslant 0$.
(a) For $a>0$, give the slope of the tangent line to the graph of $y=f(x)$ at the point (a, \sqrt{a}).
(b) Explain what happens to the slope of the tangent line to the graph of $y=\sqrt{x}$ at the point (a, \sqrt{a}), for $a>0$, as $a \rightarrow 0^{+}$. What does this say about the the existence, or nonexistence, of a tangent line to the graph of $y=\sqrt{x}$ at $(0,0)$
4. Let $F(x)=\int_{0}^{x} \frac{1}{\sqrt{1+t^{4}}} d t$, for $x \in \mathbf{R}$.
(a) Explain why F is differentiable in \mathbf{R} and compute F^{\prime}.
(b) Give the linear approximation to F at 0 and use it to estimate the integral

$$
\int_{0}^{0.047} \frac{1}{\sqrt{1+t^{4}}} d t
$$

5. In each case, explain why the given function, f, is differentiable for all x in its domain, and compute f^{\prime}.
(a) $f(x)=\frac{x}{x^{2}+1}$ for all $x \in \mathbf{R}$.
(b) $f(x)=\ln \left(\sqrt{1+x^{2}}\right)$, for $x \in \mathbf{R}$.
