Exam 3

Friday, December 7, 2012

Name: _

Show all significant work and justify all your answers. This is a closed book exam. Use your own paper and/or the paper provided by the instructor. You have 90 minutes to work on the following 5 problems. Relax.

- 1. Let $f: I \to \mathbf{R}$ denote a real valued function defined on some open interval, I, of real numbers. Let a denote any point in I.
 - (a) State precisely what it means for f to be differentiable at a.
 - (b) Use the definition of the derivative for an appropriately chosen function to show that the limit

$$\lim_{h \to 0} \frac{\cos h - 1}{h}$$

exists, and compute the limit. Explain your reasoning.

2. Let f denote a real valued function defined in some open interval I and let $a \in I$. Let F denote the area function

$$F(x) = \int_{a}^{x} f(t) dt$$
, for $x \in I$.

(a) State precisely what the Second Fundamental Theorem of Calculus says about F.

(b) Let
$$f(t) = \begin{cases} 1, & \text{if } t < 0; \\ 2t, & \text{if } t \ge 0, \end{cases}$$
 and put $F(x) = \int_0^x f(t) \, dt$, for all $x \in \mathbf{R}$.

Compute F(x), for $x \in \mathbf{R}$, and sketch the graph of y = F(x).

- (c) Show that the function F defined in part (b) is not differentiable at 0. Explain why this does not contradict the Second Fundamental Theorem of Calculus.
- 3. Let $f(x) = \sqrt{x}$, for $x \ge 0$.
 - (a) For a > 0, give the slope of the tangent line to the graph of y = f(x) at the point (a, \sqrt{a}) .
 - (b) Explain what happens to the slope of the tangent line to the graph of $y = \sqrt{x}$ at the point (a, \sqrt{a}) , for a > 0, as $a \to 0^+$. What does this say about the the existence, or nonexistence, of a tangent line to the graph of $y = \sqrt{x}$ at (0, 0)

Math 30. Rumbos

4. Let
$$F(x) = \int_0^x \frac{1}{\sqrt{1+t^4}} dt$$
, for $x \in \mathbf{R}$.

- (a) Explain why F is differentiable in \mathbf{R} and compute F'.
- (b) Give the linear approximation to F at 0 and use it to estimate the integral

$$\int_0^{0.047} \frac{1}{\sqrt{1+t^4}} \, dt.$$

5. In each case, explain why the given function, f, is differentiable for all x in its domain, and compute f'.

(a)
$$f(x) = \frac{x}{x^2 + 1}$$
 for all $x \in \mathbf{R}$.

(b) $f(x) = \ln(\sqrt{1+x^2})$, for $x \in \mathbf{R}$.