Review Problems for Exam 3

1. Show that the limit $\lim _{h \rightarrow 0} \frac{1}{h} \ln (1+h)$ exists and compute it.
2. Let $f(x)= \begin{cases}x^{2} \sin \left(\frac{1}{x}\right), & \text { if } x \neq 0 ; \\ 0 & \text { if } x=0 .\end{cases}$
(a) Show that f is differentiable at 0 and compute $f^{\prime}(0)$.
(b) Explain why f is differentiable in \mathbb{R} and compute f^{\prime}.
3. Define $f(x)=\int_{0}^{x} \frac{\sin t}{t} d t$.
(a) Explain why $f(x)$ exists for all $x \in \mathbb{R}$.
(b) Explain why f is differentiable in \mathbb{R} and compute f^{\prime}.
4. Let $f(t)=|t|$ for all $t \in \mathbb{R}$ and put $F(x)=\int_{0}^{x} f(t) d t$, for all $x \in \mathbb{R}$.
(a) Compute $F(x)$ for all $x \in \mathbb{R}$.
(b) Explain why f is differentiable and compute F^{\prime}.
5. Let f denote a continuous function defined in \mathbb{R} and suppose that

$$
\int_{0}^{x} f(t) d t=\sin \left(x^{2}\right), \quad \text { for all } x \in \mathbb{R}
$$

(a) Compute $f(x)$ for all $x \in \mathbb{R}$.
(b) Explain why f is differentiable and compute f^{\prime}.
6. Assume that g is continuous in \mathbb{R} and define $G(x)=\int_{1}^{x} g(t) d t$, for all $x \in \mathbb{R}$. Evaluate each of the following in terms of G.
(a) $\int_{1}^{2} g(t) d t$.
(b) $\int_{-2}^{2} g(t) d t$.
7. Let $f(x)=\tan (x)$, for $-\frac{\pi}{2}<x<\frac{\pi}{2}$.
(a) Give the equation of the tangent line to the graph of $y=f(x)$ at the point $(0,0)$.
(b) Give the linear approximation to f at $a=0$ and use it to estimate $\tan \left(1^{\circ}\right)$.
8. A rectangle has dimensions x and y. Assume that x and y are both differentiable functions of time, t. Let A denote the area of the rectangle.
(a) Give a formula for computing the rate of change of A.
(b) Given that, at time $t=1$ the rectangle has dimensions $x=4$ and $y=7$, and that, at that instant, x is increasing at a rate of 0.3 units of length per second, and y is decreasing at a rate of 0.2 units of length per second, give the rate of change of area at $t=1$.
9. Let f denote a continuous function define in \mathbb{R} and put $g(x)=\int_{2}^{x^{2}} f(t) d t$, for all $x \in \mathbb{R}$. Explain why g is differentiable in \mathbb{R} and compute g^{\prime}.
10. Define $f(x)=\frac{\sqrt{4+x}}{2+\sqrt{x}}$, for $x \geqslant 0$.

Explain why f is differentiable for $x>0$ and compute f^{\prime}.
11. Let $f(x)=\sin x$ for $x \in \mathbb{R}$. Compute the average value of f over the interval $[0, \pi]$.
12. A rod on length 2 meters in placed along the x-axis with its left-end at 0 . Assume the material making up the rod has a linear density given by $\rho(x)=k \sqrt{1+x}$ (in grams per meter) for $0 \leqslant x \leqslant 2$, where k is a constant. Compute the mass of the rod.
13. Assume that f is a continuous function defined in \mathbb{R} and that $2+\int_{a}^{x} t f(t) d t=2 x^{3}$, for $x \in \mathbb{R}$. Find a and give a formula for computing $f(x)$, for all $x \in \mathbb{R}$.
14. Let $\ln (x)=\int_{1}^{x} \frac{1}{t} d t$, for $x>0$.
(a) Explain why $\ln (x)$ is strictly increasing in x for all $x \in \mathbb{R}$.
(b) Use the fact that $\ln \left(2^{n}\right)=n \ln (2)$ for all $n=1,2,3, \ldots$ to explain why $\lim _{x \rightarrow \infty} \ln (x)=$ $+\infty$.
(c) Use the fact that $\ln \left(2^{-n}\right)=-n \ln (2)$ for all $n=1,2,3, \ldots$ to explain why $\lim _{x \rightarrow 0^{+}} \ln (x)=-\infty$.
(d) Explain why the natural logarithm function, \ln, has an inverse function; that is, there exists $g: \mathbb{R} \rightarrow(0, \infty)$ such that

$$
g(\ln (x))=x, \quad \text { for } x>0 \quad \text { and } \quad \ln (g(x))=x, \quad \text { for } x \in \mathbb{R}
$$

(e) Assuming that g is differentiable in \mathbb{R}, use the Chain Rule to give a formula for computing $g^{\prime}(u)$ for all $u \in \mathbb{R}$.
15. Assume that oil is leaking from a tanker at a continuous rate, $R(t)$, in gallons per hour. Give a formula for computing the amount of oil that has leaked out of the tanker during the time interval $[0, t]$ for any $t \geqslant 0$.

