Solutions to Review Problems for Exam 3

1. Show that the limit $\lim _{h \rightarrow 0} \frac{1}{h} \ln (1+h)$ exists and compute it.

Solution: Let $f(x)=\ln (1+x)$, for $x>-1$, and note that $\frac{1}{h} \ln (1+h)$ is the difference quotient of f at 0 ; that is

$$
\begin{equation*}
\frac{1}{h} \ln (1+h)=\frac{f(0+h)-f(0)}{h}, \quad \text { for } h \neq 0 \tag{1}
\end{equation*}
$$

Note that f is a composition the natural logarithm function, \ln, and the polynomial function $p(x)=1+x)$; that is, $f(x)=\ln (p(x)$, for $x>-1$. Note also that $p(x)>0$ for $x>-1$. Thus, since both \ln and p are differentiable, it follows that f is differentiable and, by the Chain Rule,

$$
f^{\prime}(x)=\ln ^{\prime}(p(x)) \cdot p^{\prime}(x), \quad \text { for } x>-1
$$

from which we get that

$$
\begin{equation*}
f^{\prime}(x)=\frac{1}{x+1}, \quad \text { for } x>-1 \tag{2}
\end{equation*}
$$

Thus, f is differentiable at 0 , so that the limit as $h \rightarrow 0$ of the difference quotient in (1) exists and

$$
\lim _{h \rightarrow 0} \frac{1}{h} \ln (1+h)=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=f^{\prime}(0)=1,
$$

where we have used (2).
2. Let $f(x)= \begin{cases}x^{2} \sin \left(\frac{1}{x}\right), & \text { if } x \neq 0 ; \\ 0 & \text { if } x=0 .\end{cases}$
(a) Show that f is differentiable at 0 and compute $f^{\prime}(0)$.

Solution: First, compute the difference quotient of f at 0 to get

$$
\begin{equation*}
\frac{f(0+h)-f(0)}{h}=h \sin \left(\frac{1}{h}\right), \quad \text { for } h \neq 0 \tag{3}
\end{equation*}
$$

Next, take absolute values of both sides of (3) and use the fact that $|\sin (t)| \leqslant 1$ for all $t \in \mathbb{R}$, to get that

$$
\begin{equation*}
0 \leqslant\left|\frac{f(0+h)-f(0)}{h}\right| \leqslant|h|, \quad \text { for } h \neq 0 \tag{4}
\end{equation*}
$$

It follows from (4) and the Squeeze Lemma that

$$
\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=0
$$

so that f is differentiable at 0 and $f^{\prime}(0)=0$.
(b) Explain why f is differentiable in \mathbb{R} and compute f^{\prime}.

Solution: We have already seen in part (a) that f is differentiable at 0 and that $f^{\prime}(0)=0$. It remains to consider the case $x \neq 0$.
If $x \neq 0$,

$$
\begin{equation*}
f(x)=x^{2} \sin \left(\frac{1}{x}\right) \tag{5}
\end{equation*}
$$

which displays f as a product of differentiable functions (the second factor in (5) being a composition of differentiable functions for $x \neq 0$).
Applying the Product Rule and the Chain Rule, we obtain from (5) that

$$
f^{\prime}(x)=2 x \sin \left(\frac{1}{x}\right)-\cos \left(\frac{1}{x}\right), \quad \text { for } x \neq 0
$$

Thus,

$$
f^{\prime}(x)= \begin{cases}2 x \sin \left(\frac{1}{x}\right)-\cos \left(\frac{1}{x}\right), & \text { for } x \neq 0 \\ 0, & \text { for } x=0\end{cases}
$$

3. Define $f(x)=\int_{0}^{x} \frac{\sin t}{t} d t$.
(a) Explain why $f(x)$ exists for all $x \in \mathbb{R}$.

Solution: Note that integrand in the definition of f has has removable singularity at 0 because

$$
\lim _{t \rightarrow 0} \frac{\sin t}{t}=1
$$

Thus, defining

$$
g(t)= \begin{cases}\frac{\sin t}{t}, & \text { if } t \neq 0 \tag{6}\\ 1, & \text { if } t=0\end{cases}
$$

we see that

$$
\begin{equation*}
f(x)=\int_{0}^{x} g(t) d t, \quad \text { for } x \in \mathbb{R} \tag{7}
\end{equation*}
$$

where g is continuous in \mathbb{R}. It follows then, from the Existence of Area Function Theorem, that $f(x)$ exists for all $x \in \mathbb{R}$.
(b) Explain why f is differentiable in \mathbb{R} and compute f^{\prime}.

Solution: Since the function g defined in (6) is continuous, it follows from (7) and the Second Fundamental Theorem of Calculus that f is differentiable and

$$
f^{\prime}(x)=\left\{\begin{array}{cl}
\frac{\sin x}{x}, & \text { if } x \neq 0 \\
1, & \text { if } x=0
\end{array}\right.
$$

4. Let $f(t)=|t|$ for all $t \in \mathbb{R}$ and put $F(x)=\int_{0}^{x} f(t) d t$, for all $x \in \mathbb{R}$.
(a) Compute $F(x)$ for all $x \in \mathbb{R}$.

Solution: Compute

$$
F(x)=\int_{0}^{x}|t| d t, \quad \text { for } x \in \mathbb{R}
$$

If $x<0$, we have that

$$
F(x)=\int_{0}^{x}-t d t=-\frac{x^{2}}{2}
$$

If $x \geqslant 0$, we have that

$$
F(x)=\int_{0}^{x} t d t=\frac{x^{2}}{2}
$$

We therefore have that

$$
F(x)=\left\{\begin{aligned}
-\frac{x^{2}}{2}, & \text { if } x<0 \\
\frac{x^{2}}{2}, & \text { if } x \geqslant 0
\end{aligned}\right.
$$

(b) Explain why f is differentiable and compute F^{\prime}.

Solution: Observe that the function f is continuous in \mathbb{R}. Thus, by the Second Fundamental Theorem of Calculus, F is differentiable and

$$
F^{\prime}(x)=f(x)=|x|, \quad \text { for all } x \in \mathbb{R}
$$

5. Let f denote a continuous function defined in \mathbb{R} and suppose that

$$
\begin{equation*}
\int_{0}^{x} f(t) d t=\sin \left(x^{2}\right), \quad \text { for all } x \in \mathbb{R} \tag{8}
\end{equation*}
$$

(a) Compute $f(x)$ for all $x \in \mathbb{R}$.

Solution: Since f is continuous in \mathbb{R}, we can apply the Second Fundamental Theorem of Calculus to differentiate the left-hand side of the equation in (8) to get

$$
\begin{equation*}
f(x)=\frac{d}{d x}\left[\sin \left(x^{2}\right)\right]=2 x \cos \left(x^{2}\right), \quad \text { for } x \in \mathbb{R} \tag{9}
\end{equation*}
$$

where we have applied the Chain Rule.
(b) Explain why f is differentiable and compute f^{\prime}.

Solution: In view of (9), we see that f is a product of differentiable functions. Hence, f is differentiable and, using the Product Rule and the Chain Rule,

$$
f^{\prime}(x)=2 \cos \left(x^{2}\right)-4 x^{2} \sin \left(x^{2}\right), \quad \text { for } x \in \mathbb{R}
$$

6. Assume that g is continuous in \mathbb{R} and define $G(x)=\int_{1}^{x} g(t) d t$, for all $x \in \mathbb{R}$. Evaluate each of the following in terms of G.
(a) $\int_{1}^{2} g(t) d t$.

Solution: By the definition of $G, \int_{1}^{2} g(t) d t=G(2)$.
(b) $\int_{-2}^{2} g(t) d t$.

Solution: By the Second and Third Fundamental Theorems of Calculus, $\int_{1}^{2} g(t) d t=G(2)-G(-2)$.
7. Let $f(x)=\tan (x)$, for $-\frac{\pi}{2}<x<\frac{\pi}{2}$.
(a) Give the equation of the tangent line to the graph of $y=f(x)$ at the point $(0,0)$.
Solution: First, apply the Quotient Rule to $f(x)=\frac{\sin (x)}{\cos (x)}$, for $-\frac{\pi}{2}<$ $x<\frac{\pi}{2}$, to get that

$$
f^{\prime}(x)=\frac{1}{\cos ^{2} x}=\sec ^{2}(x), \quad \text { for }-\frac{\pi}{2}<x<\frac{\pi}{2}
$$

The equation of the tangent line to the graph of $y=\tan (x)$ at $(0,0)$ is given by

$$
y=f(0)+f^{\prime}(0)(x-0),
$$

or

$$
y=x
$$

(b) Give the linear approximation to f at $a=0$ and use it to estimate $\tan \left(1^{\circ}\right)$. The linear approximation to $\tan (x)$ at $a=0$ is

$$
L(x)=f(0)+f^{\prime}(0)(x-0)=x, \quad \text { for all } x \in \mathbb{R}
$$

Thus,

$$
\tan (x) \approx x, \quad \text { for } x \text { close to } 0
$$

In particular,

$$
\tan \left(1^{\circ}\right)=\tan \left(\frac{\pi}{180}\right) \approx \frac{\pi}{180} \doteq 0.0175
$$

8. A rectangle has dimensions x and y. Assume that x and y are both differentiable functions of time, t. Let A denote the area of the rectangle.
(a) Give a formula for computing the rate of change of A.

Solution: The area of the rectangle, as a function of t, is given by

$$
A(t)=x(t) y(t), \quad \text { for } t \geqslant 0
$$

Thus, by the Product Rule, the rate of change of A is

$$
\begin{equation*}
\frac{d A}{d t}=x \frac{d y}{d t}+\frac{d x}{d t} y . \tag{10}
\end{equation*}
$$

(b) Given that, at time $t=1$ the rectangle has dimensions $x=4$ and $y=7$, and that, at that instant, x is increasing at a rate of 0.3 units of length per second, and y is decreasing at a rate of 0.2 units of length per second, give the rate of change of area at $t=1$.
Solution: Apply the result in (10) to $x=4, y=7, \frac{d x}{d t}=0.3$ and $\frac{d x}{d t}=-0.2$, we get that, at $t=1$,

$$
\frac{d A}{d t}=4(-0.2)+7(0.3)=2.1-0.8=1.3
$$

Thus, at $t=1$, the area is increasing at a rate of 1.3 units of area per second.
9. Let f denote a continuous function define in \mathbb{R} and put $g(x)=\int_{2}^{x^{2}} f(t) d t$, for all $x \in \mathbb{R}$. Explain why g is differentiable in \mathbb{R} and compute g^{\prime}.
Solution: Put $F(u)=\int_{2}^{u} f(t) d t$, for $u \in \mathbb{R}$. Then, since f is continuous, it follows from the Second Fundamental Theorem of Calculus that the F is differentiable and

$$
\begin{equation*}
F^{\prime}(u)=f(u), \quad \text { for all } u \in \mathbb{R} \tag{11}
\end{equation*}
$$

Observe that $g(x)=F\left(x^{2}\right)$, for all $x \in \mathbb{R}$, so that g is the composition of F and the polynomial function $p(x)=x^{2}$, for $x \in \mathbb{R}$, both of which are differentiable. It follows that g is differentiable and, by the Chain Rule,

$$
g^{\prime}(x)=F^{\prime}\left(x^{2}\right) p^{\prime}(x)=f\left(x^{2}\right)(2 x)=2 x f\left(x^{2}\right), \quad \text { for } x \in \mathbb{R}
$$

10. Define $f(x)=\frac{\sqrt{4+x}}{2+\sqrt{x}}$, for $x \geqslant 0$.

Explain why f is differentiable for $x>0$ and compute f^{\prime}.
Solution: f is the ratio of two differentiable functions for $x>0$, where the denominator is not zero for $x>0$. Hence, f is differentiable and, by the

Quotient Rule,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(2+\sqrt{x}) \frac{d}{d x}[\sqrt{4+x}]-\sqrt{4+x} \frac{d}{d x}[2+\sqrt{x}]}{(2+\sqrt{x})^{2}} \\
& =\frac{(2+\sqrt{x}) \frac{1}{2 \sqrt{4+x}}-\sqrt{4+x} \frac{1}{2 \sqrt{x}}}{(2+\sqrt{x})^{2}} \\
& =\frac{(2+\sqrt{x}) \sqrt{x}-(4+x)}{2 \sqrt{x} \sqrt{4+x}(2+\sqrt{x})^{2}} \\
& =\frac{2 \sqrt{x}+x-4-x}{2 \sqrt{x} \sqrt{4+x}(2+\sqrt{x})^{2}}
\end{aligned}
$$

so that

$$
f^{\prime}(x)=\frac{\sqrt{x}-2}{\sqrt{x} \sqrt{4+x}(2+\sqrt{x})^{2}}, \quad \text { for } x>0
$$

11. Let $f(x)=\sin x$ for $x \in \mathbb{R}$. Compute the average value of f over the interval $[0, \pi]$.
Solution: The average value of f over $[0, \pi]$ is given by

$$
\bar{f}=\frac{1}{\pi-0} \int_{0}^{\pi} \sin x d x=\frac{2}{\pi}
$$

12. A rod on length 2 meters in placed along the x-axis with its left-end at 0 . Assume the material making up the rod has a linear density given by $\rho(x)=$ $k \sqrt{1+x}$ (in grams per meter) for $0 \leqslant x \leqslant 2$, where k is a constant. Compute the mass of the rod.

Solution: The mass of the rod is given by

$$
\begin{aligned}
M & =\int_{0}^{2} \rho(x) d x \\
& =\int_{0}^{2} k \sqrt{1+x} d x \\
& =k\left[\frac{2}{3}(1+x)^{3 / 2}\right]_{0}^{2} \\
& =\frac{2 k}{3}\left[3^{3 / 2}-1\right]
\end{aligned}
$$

13. Assume that f is a continuous function defined in \mathbb{R} and that $2+\int_{a}^{x} t f(t) d t=$ $2 x^{3}$, for $x \in \mathbb{R}$. Find a and give a formula for computing $f(x)$, for all $x \in \mathbb{R}$.
Solution: Differentiate with respect to x on both sides of the equation

$$
\begin{equation*}
2+\int_{a}^{x} t f(t) d t=2 x^{3}, \quad \text { for } x \in \mathbb{R} \tag{12}
\end{equation*}
$$

to get

$$
\begin{equation*}
\frac{d}{d x} \int_{a}^{x} t f(t) d t=\frac{d}{d x}\left[2 x^{3}\right], \quad \text { for } x \in \mathbb{R} \tag{13}
\end{equation*}
$$

Since f is assumed to be continuous, we can apply the Second Fundamental Theorem of Calculus on the left-hand side of (13) to get that

$$
\begin{equation*}
x f(x)=6 x^{2}, \quad \text { for } x \in \mathbb{R} \tag{14}
\end{equation*}
$$

Solving for $f(x)$ in (14) yields

$$
f(x)=6 x, \quad \text { for } x \in \mathbb{R}
$$

To find a, substitute a for x in (12) to get

$$
2+0=2 a^{3}
$$

which yields $a^{3}=1$, from which we get $a=1$.
14. Let $\ln (x)=\int_{1}^{x} \frac{1}{t} d t$, for $x>0$.
(a) Explain why $\ln (x)$ is strictly increasing in x for all $x>0$.

Solution: Observe that $\frac{1}{t}>0$ for $t>0$, so $\ln (x)=\int_{1}^{x} \frac{1}{t} d t$ is strictly increasing with $x>0$.
(b) Use the fact that $\ln \left(2^{n}\right)=n \ln (2)$ for all $n=1,2,3, \ldots$ to explain why $\lim _{x \rightarrow \infty} \ln (x)=+\infty$.
Solution: To see that $\ln (x)$ tends to infinity as $x \rightarrow \infty$, observe that if $x>2^{n}$, then since \ln is strictly increasing,

$$
\ln (x)>\ln \left(2^{n}\right)
$$

or

$$
\begin{equation*}
\ln (x)>n \ln (2) . \tag{15}
\end{equation*}
$$

Thus, according to (14), since $\ln (2)>\ln (1)=0$, we can make the righthand side of (15) arbitrarily large by taking n large.
(c) Use the fact that $\ln \left(2^{-n}\right)=-n \ln (2)$ for all $n=1,2,3, \ldots$ to explain why $\lim _{x \rightarrow 0^{+}} \ln (x)=-\infty$.
Solution: To see that $\ln (x)$ tends to $-\infty$ as $x \rightarrow 0^{+}$, observe that if $0<x<2^{-n}$, then since \ln is strictly increasing,

$$
\ln (x)<\ln \left(2^{-n}\right),
$$

or

$$
\begin{equation*}
\ln (x)<-n \ln (2) \tag{16}
\end{equation*}
$$

Thus, according to (16), $\ln (x)$ can be made to go to $-\infty$ by making n larger and larger.
(d) Explain why the natural logarithm function, ln, has an inverse function; that is, there exists $g: \mathbb{R} \rightarrow(0, \infty)$ such that

$$
\begin{equation*}
g(\ln (x))=x, \quad \text { for } x>0 \quad \text { and } \quad \ln (g(x))=x, \quad \text { for } x \in \mathbb{R} \tag{17}
\end{equation*}
$$

Solution: It follows from parts (a), (b) and (c) that ln: $(0, \infty) \rightarrow(-\infty,+\infty)$ is one-to-one and onto. Hence, ln has inverse function $g:(-\infty,+\infty) \rightarrow$ $(0,+\infty)$ satisfying (17).
(e) Assuming that g is differentiable in \mathbb{R}, use the Chain Rule to give a formula for computing $g^{\prime}(u)$ for all $u \in \mathbb{R}$.
Solution: Set $u=\ln (x)$ for $x>0$ and use the first equation in (17) to get

$$
\begin{equation*}
g(u)=x, \quad \text { for } u=\ln (x), \quad x>0 . \tag{18}
\end{equation*}
$$

Applying the Chain Rule to the first equation in (18) we get

$$
\begin{equation*}
g^{\prime}(u) \frac{d u}{d x}=1 \tag{19}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{d u}{d x}=\frac{1}{x}=\frac{1}{g(u)} \tag{20}
\end{equation*}
$$

where we have used the first equation in (18) again.
Combining (19) and (20) we get

$$
g^{\prime}(u) \frac{1}{g(u)}=1
$$

from which we get that

$$
g^{\prime}(u)=g(u), \quad \text { for all } u \in \mathbb{R}
$$

15. Assume that oil is leaking from a tanker at a continuous rate, $R(t)$, in gallons per hour. Give a formula for computing the amount of oil that has leaked out of the tanker during the time interval $[0, t]$ for any $t \geqslant 0$.

Solution: Let $Q(t)$ denote the amount of oil that has leaked out of the tanker since time $t=0$. Then,

$$
Q(t)=\int_{0}^{t} R(\tau) d \tau, \quad \text { for } t \geqslant 0
$$

