Review Problems for Final Exam

1. Water flows from the bottom of a tank at a rate of $R(t)=200-4 t$ liters per minute, where $0 \leq t \leq 50$ in minutes. Find the amount of water that flows from the tank during the last 20 minutes.
2. The acceleration to earth's gravitation, g, at a point a distance r from the center of the earth is a function of the distance, r, given by

$$
g(r)= \begin{cases}\frac{k r}{R^{3}}, & \text { for } r<R \\ \frac{k}{r^{2}}, & \text { for } r \geqslant R\end{cases}
$$

where R is the radius of the earth and k is some positive constant.
(a) Explain why g is continuous on $[0, \infty)$.
(b) Discuss the differentiability properties of g. Is g differentiable in $[0, \infty)$? If not, where does it fail to be differentiable?
3. Let $f(x)= \begin{cases}\frac{\sin (x)}{|x|}, & \text { if } x \neq 0 ; \\ 0, & \text { if } x=0 .\end{cases}$

Determine whether or not f is continuous in \mathbb{R}. If not, determine the point of discontinuity and their type of discontinuity.
4. Let $f(x)= \begin{cases}m x+1, & \text { if } x<1 ; \\ x^{2}, & \text { if } x \geqslant 1 .\end{cases}$

Determine the value of m that will make the function f continuous in \mathbb{R}. Explain your reasoning.
5. Let $f(x)=\ln x$ for $x>0$.
(a) Give the linear approximation to f at $a=1$.
(b) Use the linear approximation to \ln at 1 in order to estimate $\ln (0.95)$.
6. Let $f(x)=\left\{\begin{array}{rr}0, & \text { if } x<0 ; \\ x^{2}, & \text { if } x \geqslant 0 .\end{array}\right.$
(a) Show that f is differentiable at 0 and compute $f^{\prime}(0)$.
(b) Explain why f is differentiable in \mathbb{R} and compute f^{\prime}.
(c) Is f^{\prime} differentiable at 0 ? Justify your answer.
7. Give the equation of the tangent line to the graph of $y=\frac{2 x}{1+x^{2}}$ at the point $(-1,-1)$. Give the x-intercept and y-intercept of the tangent line.
8. Give an example of a function, f, that is continuous on the interval $[-2,1]$, but is not differentiable at -1 . Justify your answer.
9. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a real-valued function that satisfies $f(x+y)=f(x)+f(y)$ for all x and y in \mathbb{R}.
(a) Show that $f(0)=0$.
(b) Assume, in addition, that $\lim _{h \rightarrow 0} \frac{f(h)}{h}=47$. Show that f is differentiable in \mathbb{R} and compute f^{\prime}. Give a formula for computing $f(x)$ for all $x \in \mathbb{R}$.
10. Let $f(x)=2 \sqrt{x+1}$ for $x \geqslant-1$.
(a) Explain why f is differentiable for $x>-1$ and compute $f^{\prime}(x)$ for $x>-1$.
(b) Give a formula for evaluating the indefinite integral $\int \frac{1}{\sqrt{x+1}} d x$.
11. Compute the area of the region bounded by the graphs of $y=\sin x$ and $y=\cos x$ between the lines $x=1$ and $x=3$. Note: Give the exact value of the area.
12. Let $f(x)=\ln (\sqrt{1+x})-\ln (\sqrt{1-x})$ for $-1<x<1$.
(a) Explain why f is differentiable in the open interval $(-1,1)$, and compute $f^{\prime}(x)$ for $-1<x<1$.
(b) Evaluate the definite integral $\int_{-1 / 2}^{1 / 2} \frac{1}{1-x^{2}} d x$. Give the exact value.
13. Let $\left.f(x)=\cos (2 x)+2 \sin ^{2}(x)\right)$ for $x \in \mathbb{R}$.
(a) Explain why f is differentiable in \mathbb{R} and compute f^{\prime}.
(b) Use the trigonometric identity $\sin (2 \theta)=2 \sin \theta \cos \theta$ to simplify the expression for f^{\prime} in part (a). What do you conclude about f ?
14. Let $a>0$ and define $F(x)=\int_{1}^{a x} \frac{1}{t} d t$, for $x>0$.
(a) Explain why F is differentiable for $x>0$ and compute $F^{\prime}(x)$ for $x>0$.
(b) Put $g(x)=F(x)-\ln x$ for all $x>0$. Explain why g is differentiable in $(0,+\infty$ and compute $g^{\prime}(x)$ for $x>0$. What do you conclude about g ? What does this say about $F(x)$, for $x>0$.

