Math 30. Rumbos

Review Problems for Final Exam

- 1. Water flows from the bottom of a tank at a rate of R(t) = 200 4t liters per minute, where $0 \le t \le 50$ in minutes. Find the amount of water that flows from the tank during the last 20 minutes.
- 2. The acceleration to earth's gravitation, g, at a point a distance r from the center of the earth is a function of the distance, r, given by

$$g(r) = \begin{cases} \frac{kr}{R^3}, & \text{for } r < R; \\ \\ \frac{k}{r^2}, & \text{for } r \ge R, \end{cases}$$

where R is the radius of the earth and k is some positive constant.

- (a) Explain why g is continuous on $[0, \infty)$.
- (b) Discuss the differentiability properties of g. Is g differentiable in $[0, \infty)$? If not, where does it fail to be differentiable?

3. Let
$$f(x) = \begin{cases} \frac{\sin(x)}{|x|}, & \text{if } x \neq 0; \\ 0, & \text{if } x = 0. \end{cases}$$

Determine whether or not f is continuous in \mathbb{R} . If not, determine the point of discontinuity and their type of discontinuity.

4. Let $f(x) = \begin{cases} mx + 1, & \text{if } x < 1; \\ x^2, & \text{if } x \ge 1. \end{cases}$

Determine the value of m that will make the function f continuous in \mathbb{R} . Explain your reasoning.

- 5. Let $f(x) = \ln x$ for x > 0.
 - (a) Give the linear approximation to f at a = 1.
 - (b) Use the linear approximation to $\ln at 1$ in order to estimate $\ln(0.95)$.

6. Let
$$f(x) = \begin{cases} 0, & \text{if } x < 0; \\ x^2, & \text{if } x \ge 0. \end{cases}$$

- (a) Show that f is differentiable at 0 and compute f'(0).
- (b) Explain why f is differentiable in \mathbb{R} and compute f'.
- (c) Is f' differentiable at 0? Justify your answer.

- 7. Give the equation of the tangent line to the graph of $y = \frac{2x}{1+x^2}$ at the point (-1, -1). Give the *x*-intercept and *y*-intercept of the tangent line.
- 8. Give an example of a function, f, that is continuous on the interval [-2, 1], but is not differentiable at -1. Justify your answer.
- 9. Let $f \colon \mathbb{R} \to \mathbb{R}$ be a real-valued function that satisfies f(x+y) = f(x) + f(y) for all x and y in \mathbb{R} .
 - (a) Show that f(0) = 0.
 - (b) Assume, in addition, that $\lim_{h\to 0} \frac{f(h)}{h} = 47$. Show that f is differentiable in \mathbb{R} and compute f'. Give a formula for computing f(x) for all $x \in \mathbb{R}$.
- 10. Let $f(x) = 2\sqrt{x+1}$ for $x \ge -1$.
 - (a) Explain why f is differentiable for x > -1 and compute f'(x) for x > -1.
 - (b) Give a formula for evaluating the indefinite integral $\int \frac{1}{\sqrt{x+1}} dx$.
- 11. Compute the area of the region bounded by the graphs of $y = \sin x$ and $y = \cos x$ between the lines x = 1 and x = 3. Note: Give the exact value of the area.
- 12. Let $f(x) = \ln(\sqrt{1+x}) \ln(\sqrt{1-x})$ for -1 < x < 1.
 - (a) Explain why f is differentiable in the open interval (-1, 1), and compute f'(x) for -1 < x < 1.
 - (b) Evaluate the definite integral $\int_{-1/2}^{1/2} \frac{1}{1-x^2} dx$. Give the exact value.
- 13. Let $f(x) = \cos(2x) + 2\sin^2(x)$ for $x \in \mathbb{R}$.
 - (a) Explain why f is differentiable in \mathbb{R} and compute f'.
 - (b) Use the trigonometric identity $\sin(2\theta) = 2\sin\theta\cos\theta$ to simplify the expression for f' in part (a). What do you conclude about f?

14. Let a > 0 and define $F(x) = \int_1^{ax} \frac{1}{t} dt$, for x > 0.

- (a) Explain why F is differentiable for x > 0 and compute F'(x) for x > 0.
- (b) Put $g(x) = F(x) \ln x$ for all x > 0. Explain why g is differentiable in $(0, +\infty)$ and compute g'(x) for x > 0. What do you conclude about g? What does this say about F(x), for x > 0.