## Topics for Exam 1

1. Recovering a function from its rate of change: The constant rate case
2. The concept of limit
2.1 Limits of sequences of real numbers
2.2 Limit of functions

## 3. The concept of a continuous function

3.1 Definition of continuous functions
3.2 Properties of continuous functions
3.3 Discontinuous functions and types of discontinuity

Relevant sections in the online lecture notes: 2.1, 3.1, 3.2, 4.1 and 4.2.
Important Concepts: Constant rate of change; limit of a sequence; limit of a function; continuous functions; types of discontinuity.

## Important Results

- Constant Rate Functions. Suppose that the rate of change of a function, $f$, is a constant, $c$, then $f(t)=f\left(t_{o}\right)+c\left(t-t_{o}\right)$, for all $t$.
- The Squeeze Lemma for Sequences. Let $\left(a_{n}\right),\left(b_{n}\right)$ and $\left(c_{n}\right)$ be three sequences. Suppose that there exists a positive integer $n_{1}$ such that

$$
a_{n} \leqslant b_{n} \leqslant c_{n}, \quad \text { for all } n \geqslant n_{1} .
$$

Assume in addition that the sequences $\left(a_{n}\right)$ and $\left(c_{n}\right)$ converge to the same limit $\ell$; that is, $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=\ell$. Then, the sequence $\left(b_{n}\right)$ converges to $\ell$; that is, $\lim _{n \rightarrow \infty} b_{n}=\ell$.

- The Squeeze Lemma for Functions. Let $f, g$ and $h$ denote a functions for which there exists a positive number $\delta$ such that

$$
f(t) \leqslant g(t) \leqslant h(t), \quad \text { for } 0<|t-a|<\delta,
$$

and $t$ is in the domains of $f, g$ and $h$. Assume in addition that the limits of $f$ and $h$ as $t$ approaches $a$ exist and that $\lim _{t \rightarrow a} f(t)=\lim _{t \rightarrow a} h(t)=L$. Then, the limit of $g$ as $t$ approaches $a$ exists and $\lim _{t \rightarrow a} g(t)=L$.

Important Skills: Know how to recover a function from its rate of change when the rate is constant; know how to apply limit facts to compute limits of sequences; know how to apply function limit facts to compute limits of functions; know how to tell whether a given function is continuous or not.

