Topics for Exam 1

1. Recovering a function from its rate of change: The constant rate case

2. The concept of limit

- 2.1 Limits of sequences of real numbers
- 2.2 Limit of functions

3. The concept of a continuous function

- 3.1 Definition of continuous functions
- 3.2 Properties of continuous functions
- 3.3 Discontinuous functions and types of discontinuity

Relevant sections in the online lecture notes: 2.1, 3.1, 3.2, 4.1 and 4.2.

Important Concepts: Constant rate of change; limit of a sequence; limit of a function; continuous functions; types of discontinuity.

Important Results

- Constant Rate Functions. Suppose that the rate of change of a function, f, is a constant, c, then $f(t) = f(t_o) + c(t t_o)$, for all t.
- The Squeeze Lemma for Sequences. Let (a_n) , (b_n) and (c_n) be three sequences. Suppose that there exists a positive integer n_1 such that

$$a_n \leqslant b_n \leqslant c_n$$
, for all $n \ge n_1$.

Assume in addition that the sequences (a_n) and (c_n) converge to the same limit ℓ ; that is, $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = \ell$. Then, the sequence (b_n) converges to ℓ ; that is, $\lim_{n \to \infty} b_n = \ell$.

• The Squeeze Lemma for Functions. Let f, g and h denote a functions for which there exists a positive number δ such that

$$f(t) \leqslant g(t) \leqslant h(t), \quad \text{ for } 0 < |t-a| < \delta,$$

and t is in the domains of f, g and h. Assume in addition that the limits of f and h as t approaches a exist and that $\lim_{t \to a} f(t) = \lim_{t \to a} h(t) = L$. Then, the limit of g as t approaches a exists and $\lim_{t \to a} g(t) = L$.

Important Skills: Know how to recover a function from its rate of change when the rate is constant; know how to apply limit facts to compute limits of sequences; know how to apply function limit facts to compute limits of functions; know how to tell whether a given function is continuous or not.