Topics for Exam 3

1. Interpretations of the Riemann Integral

1.1 The area function
1.2 Recovering a function from its rate of change
1.3 Computing the amount of a substance from its linear density
1.4 Average of a function

2. Differential Calculus

2.1 Definition of differentiable function
2.2 The derivative
2.3 Properties of differentiable functions
2.3.1 Multiples and sums of differentiable functions
2.3.2 Products of differentiable functions
2.3.3 Compositions of differentiable functions
2.3.4 Quotients of differentiable functions
2.4 Interpretations of the derivative
2.1 Instantaneous rate of change
2.2 Linear approximation to a differentiable function
2.3 Tangent line to the graph of a differentiable function.

3. Fundamental Theorems

3.1 Recovering a function from its rate of change
3.2 Differentiability of the area function
3.3 Evaluating integrals

Relevant sections in the online lecture notes: 5.4, 6.1, 6.2, 6.3, 6.4, 7.1, 7.2 and 7.3.

Relevant Assignments: 12, 13, 14, 15, 16 and 17.
Important Concepts: Average of a function, linear density, instantaneous rate of change, differentiable function, the derivative, linear approximation to a differentiable function, tangent line to the graph of a differentiable function.

Important Results

- First Fundamental Theorem of Calculus. (Theorem 7.1.1 in the Class Notes).

Let f be a differentiable function defined in an open interval I containing a. Suppose that f^{\prime} is continuous on I. Then,

$$
f(t)=f(a)+\int_{a}^{t} f^{\prime}(\tau) d \tau, \quad \text { for all } t \in I
$$

- Second Fundamental Theorem of Calculus. (Theorem 7.2.1 in the Class Notes).

Let f be a continuous function defined in an open interval I containing a. Then, the function

$$
G(x)=\int_{a}^{x} f(t) d t, \quad \text { for all } x \in I
$$

is differentiable in I and $G^{\prime}(x)=f(x)$ for all $x \in I$, or

$$
\frac{d}{d x}\left[\int_{a}^{x} f(t) d t\right]=f(x), \quad \text { for } x \in I
$$

- Third Fundamental Theorem of Calculus. (Theorem 7.1.1 in the Class Notes).

Let f be a continuous function defined in an open interval I. Assume that there exists a function, F, that is differentiable in I and $F^{\prime}(x)=f(x)$ for all $x \in I$. Then, for any $a, b \in I$,

$$
\int_{a}^{b} f(t) d t=F(b)-F(a)
$$

Important Skills: Know how to compute the average value of a function; know how to compute the amount of a substance from its linear density; know how determine if a function is differentiable or not; know how to apply the properties of differentiation to compute derivatives of differentiable functions; know how to compute the linear approximation to a differentiable function at a given point; know how to compute the tangent line to the graph of a differentiable function at any point; know when and how to apply the Fundamental Theorems of Calculus.

