Assignment \#15

Due on Wednesday, October 30, 2013
Read Section 5.1 on the Definition of the Joint Distribution and Section 5.2 on Marginal Distributions in the class lecture notes at
http://pages.pomona.edu/~ajr04747/
Read Section 3.4 on Bivariate Distributions in DeGroot and Schervish.
Read Section 3.5 on Marginal Distributions in DeGroot and Schervish.
Do the following problems

1. Let $F_{(X, Y)}$ be the joint cdf of two random variables X and Y. For real constants $a<b, c<d$, show that

$$
\operatorname{Pr}(a<X \leqslant b, c<Y \leqslant d)=F_{(X, Y)}(b, d)-F_{(X, Y)}(b, c)-F_{(X, Y)}(a, d)+F_{(X, Y)}(a, c)
$$

Use this result to show that $F(x, y)=\left\{\begin{array}{ll}1 & \text { if } x+2 y \geqslant 1, \\ 0 & \text { otherwise },\end{array}\right.$ cannot be the joint cdf of two random variables.
2. Let $g(t)$ denote a non-negative, integrable function of a single variable with the property that $\int_{0}^{\infty} g(t) \mathrm{d} t=1$. Define

$$
f(x, y)= \begin{cases}\frac{2 g\left(\sqrt{x^{2}+y^{2}}\right)}{\pi \sqrt{x^{2}+y^{2}}} & \text { for } 0<x<\infty, 0<y<\infty \\ 0 & \text { otherwise }\end{cases}
$$

Show that $f(x, y)$ is a joint pdf for two random variables X and Y.
3. Let X and Y have joint pdf $f_{(X, Y)}(x, y)= \begin{cases}e^{-x-y} & \text { for } 0<x<\infty, 0<y<\infty, \\ 0 & \text { otherwise } .\end{cases}$ Define $Z=X+Y$. Compute $\operatorname{Pr}(Z \leqslant z)$ for $0<z<\infty$ and give the pdf of Z.
4. Let X and Y have joint $\operatorname{pdf} f_{(X, Y)}(x, y)=\left\{\begin{array}{ll}1 & \text { for } 0<x<1,0<y<1, \\ 0 & \text { otherwise } .\end{array}\right.$ Find the cdf and pdf of the product $Z=X Y$.
5. Suppose that two persons make an appointment to meet between 5 PM and 6 PM at a certain location and they agree that neither person will wait more than 10 minutes for each person. If they arrive independently at random times between 5 PM and 6 PM , what is the probability that they will meet?

