Assignment #22

Due on Monday, November 25, 2013

Read Chapter 8 on *Introduction to Estimation* in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 8.2 on The Chi–Square Distribution in DeGroot and Schervish.

Read Section 8.3 on the *Joint Distribution of the Sample Mean and the Variance* in DeGroot and Schervish.

- 1. Let (X_k) denote a sequence of independent, identically distributed Normal (μ, σ^2) random variables. In this problem we consider two ways of estimating the variance σ^2 based on random samples of size n, X_1, X_2, \ldots, X_n .
 - (a) We can estimate σ^2 by using the estimator $\hat{\sigma}_n^2 = \frac{1}{n} \sum_{k=1}^n (X_k \overline{X}_n)^2$.

The estimator $\hat{\sigma}_n^2$ is called the maximum likelihood estimator for σ^2 . Compute $E(\hat{\sigma}_n^2)$. Is $\hat{\sigma}_n^2$ an unbiased estimator for σ^2 ?

(b) The sample variance, S_n^2 , is defined by $S_n^2 = \frac{1}{n-1} \sum_{k=1}^n (X_k - \overline{X}_n)^2$. Compute $E(S_n^2)$. Is $\hat{\sigma}_n^2$ an unbiased estimator for σ^2 ?

2. The Gamma Function. The gamma function, $\Gamma(x)$, plays a very important role in the definitions a several probability distributions which are very useful in applications. It is defined as follows:

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} \, \mathrm{d}t \quad \text{for all} \ x > 0.$$
(1)

Note: $\Gamma(x)$ can also be defined for negative values of x which are not integers; it is not defined at x = 0. In this course, we will only consider $\Gamma(x)$ for x > 0. Derive the following identities:

- (a) $\Gamma(1) = 1$.
- (b) $\Gamma(x+1) = x\Gamma(x)$ for all x > 0.
- (c) $\Gamma(n+1) = n!$ for all non-negative integers n.

- 3. Let $\Gamma: (0, \infty) \to \mathbb{R}$ be as defined in (1).
 - (a) Compute $\Gamma(1/2)$.

Hint: The change of variable $t = z^2/2$ might come in handy. Recall that if $Z \sim \text{Normal}(0, 1)$, then its pdf is given by

$$f_z(z) = \frac{e^{-z^2/2}}{\sqrt{2\pi}}$$
 for all $z \in \mathbb{R}$.

- (b) Compute $\Gamma(3/2)$.
- 4. Use the results of Problems 2 and 3 to derive the identity:

$$\Gamma\left(\frac{k}{2}\right) = \frac{\Gamma(k)\sqrt{\pi}}{2^{k-1} \Gamma\left(\frac{k+1}{2}\right)}$$

for every positive, odd integer k.

Suggestion: Proceed by induction on k.

- 5. Let α and β denote positive real numbers and define $f(x) = Cx^{\alpha-1}e^{-x/\beta}$ for x > 0 and f(x) = 0 for $x \leq 0$, where C denotes a positive real number.
 - (a) Find the value of C so that f is the pdf for some distribution.
 - (b) For the value of C found in part (a), let f denote the pdf of a random variable X. Compute the mgf of X.

Hint: The pdf found in part (a) is related to the Gamma function.