Review Problems for Exam 1

1. There are 5 red chips and 3 blue chips in a bowl. The red chips are numbered $1,2,3,4,5$ respectively, and the blue chips are numbered $1,2,3$ respectively. If two chips are to be drawn at random and without replacement, find the probability that these chips are have either the same number or the same color.
2. A person has purchased 10 of 1,000 tickets sold in a certain raffle. To determine the five prize winners, 5 tickets are drawn at random and without replacement. Compute the probability that this person will win at least one prize.
3. Let $(\mathcal{C}, \mathcal{B}, \operatorname{Pr})$ denote a probability space, and let E_{1}, E_{2} and E_{3} be mutually exclusive events in \mathcal{B}. Find $\operatorname{Pr}\left[\left(E_{1} \cup E_{2}\right) \cap E_{3}\right]$ and $\operatorname{Pr}\left(E_{1}^{c} \cup E_{2}^{c}\right)$.
4. Let $(\mathcal{C}, \mathcal{B}, \operatorname{Pr})$ denote a probability space, and let A and B events in \mathcal{B}. Show that $\operatorname{Pr}(A \cap B) \leq \operatorname{Pr}(A) \leq \operatorname{Pr}(A \cup B) \leq \operatorname{Pr}(A)+\operatorname{Pr}(B)$.
5. Let $(\mathcal{C}, \mathcal{B}, \operatorname{Pr})$ denote a probability space, and let E_{1}, E_{2} and E_{3} be mutually independent events in \mathcal{B} with probabilities $\frac{1}{2}, \frac{1}{3}$ and $\frac{1}{4}$, respectively. Compute the exact value of $\operatorname{Pr}\left(E_{1} \cup E_{2} \cup E_{3}\right)$.
6. Let $(\mathcal{C}, \mathcal{B}, \operatorname{Pr})$ denote a probability space, and let E_{1}, E_{2} and E_{3} be mutually independent events in \mathcal{B} with $\operatorname{Pr}\left(E_{1}\right)=\operatorname{Pr}\left(E_{2}\right)=\operatorname{Pr}\left(E_{3}\right)=\frac{1}{4}$. Compute $\operatorname{Pr}\left[\left(E_{1}^{c} \cap E_{2}^{c}\right) \cup E_{3}\right]$.
7. A machine produces parts that are either good (90%), slightly defective (2%), or obviously defective (8%). Produced parts get passed through an automatic inspection machine, which is able to detect any part that is obviously defective and discard it.
(a) If a part passes the inspection, what is the probability that is is a good part?
(b) Given that a part passes the inspection, what is the probability that is is slightly defective?
(c) Assume that a one-year warranty is given for the parts that are shipped to customers. Suppose that a good part fails within the first year with probability 0.01 , while a slightly defective part fails within the first year with probability 0.10 . What is the probability that a customer receives a part that fails within the first year and is therefore entitled to a warranty replacement?
8. Toss a fair coin three times in a row. Let A denote the event that either the three tosses yield three heads or three tails; B the event that at least two heads come up; and C the event that at most two tails come up. Out of the pairs of events: $(A, B),(A, C)$, and (B, C), determine the ones that are independent and the ones that are dependent. Explain your reasoning.
9. A bowl contains 10 chips of the same size and shape. One and only one of these chips is red. Draw chips from the bowl at random, one at a time and without replacement, until the red chip is drawn. Let X denote the number of draws needed to get the red chip. Determine the pmf of X and compute $\operatorname{Pr}(X \leq 4)$.
10. Let X have pmf given by $p_{X}(x)=\frac{1}{3}$ for $x=1,2,3$ and $p(x)=0$ elsewhere. Give the pmf of $Y=2 X+1$.
11. Let X have pmf given by $p_{X}(x)=\left(\frac{1}{2}\right)^{x}$ for $x=1,2,3, \ldots$ and $p_{X}(x)=0$ elsewhere. Give the pmf of $Y=X^{3}$.
12. Let $f(x)=\left\{\begin{array}{ll}\frac{1}{x^{2}} & \text { if } 1<x<\infty ; \\ 0 & \text { if } x \leq 1,\end{array}\right.$ and define a probability on the Borel σ-field of the real line \mathbb{R} by $\operatorname{Pr}[(a, b)]=\int_{a}^{b} f(x) d x$, for all intervals, (a, b).
If E_{1} denote the interval $(1,2)$ and E_{2} the interval $(4,5)$, compute $\operatorname{Pr}\left(E_{1}\right)$, $\operatorname{Pr}\left(E_{2}\right), \operatorname{Pr}\left(E_{1} \cup E_{2}\right)$ and $\operatorname{Pr}\left(E_{1} \cap E_{2}\right)$.
13. A mode of a distribution of a random discrete variable X is a value of x that maximizes the pmf of X. If there is only one such value, it is called the mode of the distribution.
Let X have pmf given by $p(x)=\left(\frac{1}{2}\right)^{x}$ for $x=1,2,3, \ldots$, and $p(x)=0$ elsewhere. Compute a mode of the distribution.
14. Let $f(x)=\left\{\begin{array}{ll}c x(1-x), & \text { if } 0<x<1 ; \\ 0 & \text { elsewhere },\end{array}\right.$ where c is a positive constant.
(a) Determine the value of c so that $\operatorname{Pr}[(a, b)]=\int_{a}^{b} f(x) d x$, for all intervals, (a, b), defines a probability on the Borel σ-field of the real line \mathbb{R}.
(b) For each $x \in \mathbb{R}$, define $F(x)=\operatorname{Pr}[(-\infty, x]]$. Compute F and sketch its graph. Find the value of x for which $F(x)=0.5$.
