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Solutions to Review Problems for Exam 1

1. There are 5 red chips and 3 blue chips in a bowl. The red chips are numbered
1, 2, 3, 4, 5 respectively, and the blue chips are numbered 1, 2, 3 respectively.
If two chips are to be drawn at random and without replacement, find the
probability that these chips are have either the same number or the same color.

Solution: Let R denote the event that the two chips are red. Then the as-
sumption that the chips are drawn at random and without replacement implies
that

Pr(R) =

(
5

2

)
(

8

2

) =
5

14
.

Similarly, if B denotes the event that both chips are blue, then

Pr(B) =

(
3

2

)
(

8

2

) =
3

28
.

It then follows that the probability that both chips are of the same color is

Pr(R ∪B) = Pr(R) + Pr(B) =
13

28
,

since R and B are mutually exclusive.

Let N denote the event that both chips show the same number. Then,

Pr(N) =
3(
8

2

) =
3

28
.

Finally, since R ∪ B and N are mutually exclusive, then the probability that
the chips are have either the same number or the same color is

Pr(R ∪B ∪N) = Pr(R ∪B) + Pr(N) =
13

28
+

3

28
=

16

28
=

2

7
.

�

2. A person has purchased 10 of 1,000 tickets sold in a certain raffle. To determine
the five prize winners, 5 tickets are drawn at random and without replacement.
Compute the probability that this person will win at least one prize.
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Solution: Let N denote the event that the person will not win any prize. Then

Pr(N) =

(
995

10

)
(

1000

10

) ; (1)

that is, the probability of purchasing 10 non–winning tickets.

It follows from (1) that

Pr(N) =
(990)(989)(988)(987)(986)

(1000)(999)(998)(997)(996)

=
435841667261

458349513900

≈ 0.9509.

(2)

Thus, using the result in (2), the probability of the person winning at least one
of the prizes is

Pr(N c) = 1− Pr(N)

≈ 1− 0.9509

= 0.0491,

or about 4.91%. �

3. Let (C,B,Pr) denote a probability space, and let E1, E2 and E3 be mutually
exclusive events in B. Find Pr[(E1 ∪ E2) ∩ E3] and Pr(Ec

1 ∪ Ec
2).

Solution: Since E1, E2 and E3 are mutually disjoint events, it follows that
(E1 ∪ E2) ∩ E3 = ∅; so that

Pr[(E1 ∪ E2) ∩ E3] = 0.

Next, use De Morgan’s law to compute

Pr(Ec
1 ∪ Ec

2) = Pr([E1 ∩ E2]
c)

= Pr(∅c)

= Pr(C)

= 1.
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4. Let (C,B,Pr) denote a probability space, and let A and B events in B. Show
that

Pr(A ∩B) ≤ Pr(A) ≤ Pr(A ∪B) ≤ Pr(A) + Pr(B). (3)

Solution: Since A ∩B ⊆ A, it follows that

Pr(A ∩B) 6 Pr(A). (4)

Similarly, since A ⊆ A ∪B, we get that

Pr(A) 6 Pr(A ∪B). (5)

Next, use the identity

Pr(A ∪B) = Pr(A) + Pr(B)− Pr(A ∩B),

and fact that that
Pr(A ∩B) > 0,

to obtain that
Pr(A ∪B) 6 Pr(A) + Pr(B). (6)

Finally, combine (4), (5) and (6) to obtain (3). �

5. Let (C,B,Pr) denote a probability space, and let E1, E2 and E3 be mutually

independent events in B with probabilities
1

2
,

1

3
and

1

4
, respectively. Compute

the exact value of Pr(E1 ∪ E2 ∪ E3).

Solution: First, use De Morgan’s law to compute

Pr[(E1 ∪ E2 ∪ E3)
c] = Pr(Ec

1 ∩ Ec
2 ∩ Ec

3) (7)

Then, since E1, E2 and E3 are mutually independent events, it follows from (7)
that

Pr[(E1 ∪ E2 ∪ E3)
c] = Pr(Ec

1) · Pr(Ec
2) · Pr(Ec

3),

so that

Pr[(E1 ∪ E2 ∪ E3)
c] = (1− Pr(E1))(1− Pr(E2))(1− Pr(E3))

=

(
1− 1

2

)(
1− 1

3

)(
1− 1

4

)

=
1

2
· 2

3
· 3

4
,
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so that

Pr[(E1 ∪ E2 ∪ E3)
c] =

1

4
. (8)

It then follows from (8) that

Pr(E1 ∪ E2 ∪ E3) = 1− Pr[(E1 ∪ E2 ∪ E3)
c] =

3

4
.

�

6. Let (C,B,Pr) denote a probability space, and let E1, E2 and E3 be mutually

independent events in B with Pr(E1) = Pr(E2) = Pr(E3) =
1

4
. Compute

Pr[(Ec
1 ∩ Ec

2) ∪ E3].

Solution: First, use De Morgan’s law to compute

Pr[((Ec
1 ∩ Ec

2) ∪ E3)
c] = Pr[(Ec

1 ∩ Ec
2)

c ∩ Ec
3] (9)

Next, use the assumption that E1, E2 and E3 are mutually independent events
to obtain from (9) that

Pr[((Ec
1 ∩ Ec

2) ∪ E3)
c] = Pr[(Ec

1 ∩ Ec
2)

c] · Pr[Ec
3], (10)

where

Pr[Ec
3] = 1− Pr(E3) =

3

4
, (11)

and
Pr[(Ec

1 ∩ Ec
2)

c] = 1− Pr[Ec
1 ∩ Ec

2]

= 1− Pr[Ec
1] · Pr[Ec

2],
(12)

by the independence of E1 and E2.

It follows from the calculations in (12) that

Pr[(Ec
1 ∩ Ec

2)
c] = 1− (1− Pr[E1])(1− Pr[E2])

= 1−
(

1− 1

4

)(
1− 1

4

)

= 1− 3

4
· 3

4

=
7

16

(13)
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Substitute (11) and the result of the calculations in (13) into (10) to obtain

Pr[((Ec
1 ∩ Ec

2) ∪ E3)
c] =

7

16
· 3

4
=

21

64
. (14)

Finally, use the result in (14) to compute

Pr[(Ec
1 ∩ Ec

2) ∪ Ec
3] = 1− Pr[((Ec

1 ∩ Ec
2) ∪ E3)

c]

= 1− 21

64

=
43

64
.

�

7. A machine produces parts that are either good (90%), slightly defective (2%),
or obviously defective (8%). Produced parts get passed through an automatic
inspection machine, which is able to detect any part that is obviously defective
and discard it.

(a) If a part passes the inspection, what is the probability that is is a good
part?

Solution: Let G denote the event that the machine produces a good part,
S denote the event that the machine produces a slightly defective part, and
D the event that the machine produces an obviously defective part. We
are then given that

Pr(G) = 0.90, Pr(S) = 0.02 and Pr(D) = 0.08.

A part passes inspection if it is good part or if it is slightly defective; in
other words, if the complement of event D occurs (note that Dc = G∪S).
Thus, the probability that a part is good, given that it passed inspection
is the conditional probability

Pr(G | Dc) =
Pr(G ∩Dc)

Pr(Dc)

=
Pr(G)

Pr(G ∪ S)

=
0.90

0.92

=
45

46
.
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(b) Given that a part passes the inspection, what is the probability that it is
slightly defective?

Solution: In this case we compute the conditional probability

Pr(S | Dc) =
Pr(S ∩Dc)

Pr(Dc)

=
Pr(S)

Pr(G ∪ S)

=
0.02

0.92

=
1

46

�

(c) Assume that a one-year warranty is given for the parts that are shipped
to customers. Suppose that a good part fails within the first year with
probability 0.01, while a slightly defective part fails within the first year
with probability 0.10. What is the probability that a customer receives a
part that fails within the first year and is therefore entitled to a warranty
replacement?

Solution: Let F denote the event that a part that has passed inspection
will fail within the first year after shipping. Let GI denote the event that
a good part has passed inspection and been shipped. From part (a) we
have that

Pr(GI) = Pr(G | Dc) =
45

46
.

Similarly, denoting by SI the event that a slightly defective part has passed
inspection, we have from part (b) that

Pr(SI) = Pr(S | Dc) =
1

46
.

We are given that

Pr(F | GI) = 0.01 and Pr(F | SI) = 0.10.
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It then follows from the Law of Total Probability that

Pr(F ) = Pr(GI) · Pr(F | GI) + Pr(SI) · Pr(F | SI)

=
45

46
· (0.01) +

1

46
· (0.10)

=̇ 0.0112.

Thus, the probability that a customer receives a part that fails within the
first year is about 1.12%. �

8. Toss a fair coin three times in a row. Let A denote the event that either the
three tosses yield three heads or three tails; B the event that at least two heads
come up; and C the event that at most two tails come up. Out of the pairs
of events: (A,B), (A,C), and (B,C), determine the ones that are independent
and the ones that are dependent. Explain your reasoning.

Solution: The sample space for this experiment is

C = {HHH,HHT,HTH,HTT, THH, THT, TTH, TTT}.

The events A, B and C are

A = {HHH,TTT},

B = {HHH,HHT,HTH, THH},

and
C = {HHH,HHT,HTH,HTT, THH, THT, TTH},

respectively. Since all the elements of C are equally likely, it follows that

Pr(A) =
1

4
, Pr(B) =

1

2
, and Pr(C) =

7

8
.

Note that A ∩B = {HHH}, so that

Pr(A ∩B) =
1

8
=

1

4
· 1

2
= Pr(A) · Pr(B);

thus, A and B are independent.

Next, compute A ∩ C = {HHH}, so that

Pr(A ∩ C) =
1

8
6= 1

4
· 7

8
= Pr(A) · Pr(C);
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thus, A and C are not independent.

Finally, compute B ∩ C = {HHH,HHT,HTH, THH}, so that

Pr(B ∩ C) =
1

2
6= 1

2
· 7

8
= Pr(B) · Pr(C);

thus, B and C are not independent. �

9. A bowl contains 10 chips of the same size and shape. One and only one of these
chips is red. Draw chips from the bowl at random, one at a time and without
replacement, until the red chip is drawn. Let X denote the number of draws
needed to get the red chip. Determine the pmf of X and compute Pr(X ≤ 4).

Solution: Compute

Pr(X = 1) =
1

10

Pr(X = 2) =
9

10
· 1

9
=

1

10

Pr(X = 3) =
9

10
· 8

9
· 1

8
=

1

10

...

Pr(X = 10) =
1

10

Thus,

p
X

(k) =


1

10
for k = 1, 2, . . . , 10;

0 elsewhere.

(15)

Next, use (15) to compute

Pr(X 6 4) =
4∑

k=1

p
X

(k) =
4

10
=

2

5
.

�

10. Let X have pmf given by p
X

(x) =
1

3
for x = 1, 2, 3 and p(x) = 0 elsewhere.

Give the pmf of Y = 2X + 1.
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Solution: Note that the possible values for Y are 3, 5 and 7

Compute

Pr(Y = 3) = Pr(2X + 1 = 3) = Pr(X = 1) =
1

3
.

Similarly, we get that

Pr(Y = 5) = Pr(X = 2) =
1

3
,

and

Pr(Y = 7) = Pr(X = 3) =
1

3
.

Thus,

p
Y

(k) =


1

3
for k = 3, 5, 7;

0 elsewhere.

�

11. Let X have pmf given by p
X

(x) =
(
1
2

)x
for x = 1, 2, 3, . . . and p

X
(x) = 0

elsewhere. Give the pmf of Y = X3.

Solution: Compute, for y = k3, for k = 1, 2, 3, . . .,

Pr(Y = y) = Pr(X3 = k3) = Pr(X = k) =

(
1

2

)k

,

so that

Pr(Y = y) =

(
1

2

)y1/3

, for y = k3, for some k = 1, 2, 3, . . .

Thus,

p
Y

(y) =


(

1

2

)y1/3

, for y = k3, for some k = 1, 2, 3, . . . ;

0 elsewhere.

�
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12. Let f(x) =


1

x2
if 1 < x <∞;

0 if x ≤ 1,
and define a probability on the Borel σ–field

of the real line R by Pr[(a, b)] =

∫ b

a

f(x) dx, for all intervals, (a, b).

If E1 denote the interval (1, 2) and E2 the interval (4, 5), compute Pr(E1),
Pr(E2), Pr(E1 ∪ E2) and Pr(E1 ∩ E2).

Solution: Compute

Pr(E1) =

∫ 2

1

1

x2
dx = −1

x

∣∣∣2
1

=
1

2
,

Pr(E2) =

∫ 5

4

1

x2
dx = −1

x

∣∣∣5
4

=
1

20
,

Pr(E1 ∪ E2) = Pr(E1) + Pr(E2) =
11

20
,

since E1 and E2 are mutually exclusive, and

Pr(E1 ∩ E2) = 0,

since E1 and E2 are mutually exclusive. �

13. A mode of a distribution of a random discrete variable X is a value of x that
maximizes the pmf of X. If there is only one such value, it is called the mode
of the distribution.

Let X have pmf given by p(x) =

(
1

2

)x

for x = 1, 2, 3, . . ., and p(x) = 0

elsewhere. Compute a mode of the distribution.

Solution: Note that p(x) is decreasing; so, p(x) is maximized when x = 1.
Thus, 1 is the mode of the distribution of X. �

14. Let f(x) =

{
cx(1− x), if 0 < x < 1;

0 elsewhere,
where c is a positive constant.

(a) Determine the value of c so that Pr[(a, b)] =

∫ b

a

f(x) dx, for all intervals,

(a, b), defines a probability on the Borel σ–field of the real line R.
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Solution: We choose c so that Pr(R) = 1, where

Pr(R) =

∫ ∞
−∞

f(x) dx

=

∫ 1

0

cx(1− x) dx

= c

∫ 1

0

[x− x2] dx

= c

[
x2

2
− x3

3

]1
0

=
c

6
.

It then follows that c = 6. �

(b) For each x ∈ R, define F (x) = Pr[(−∞, x]]. Compute F and sketch its
graph. Find the value of x for which F (x) = 0.5.

Solution: We compute F (x) =

∫ x

−∞
f(t) dt, for x ∈ R, where

f(t) =

{
6t(1− t), if 0 < t < 1;

0, elsewhere.

If x 6 0 we have that f(t) = 0 for all t 6 x, so that

F (x) = 0, for x 6 0.

If 0 < x 6 1, we get that

F (x) =

∫ x

0

6t(1− t) dt

= 6

[
t2

2
− t3

3

]x
0

= 3x2 − 2x3.

Finally, if x > 1, we have that

F (x) = 1.
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Putting all these calculations together we get

F (x) =


0, if x 6 0;

3x2 − 2x3, if 0 < x 6 1;

1, if x > 1.

A sketch of the graph of F is found in Figure 1.

x

F

Figure 1: Sketch of F (x) in Problem 14

Observe that F (0.5) = 3

(
1

2

)2

− 2

(
1

2

)3

=
3

4
− 1

4
=

1

2
, so that x =

1

2
is

the unique value of x for which F (x) = 0.5. �


