Solutions to Review Problems for Exam 1

1. There are 5 red chips and 3 blue chips in a bowl. The red chips are numbered $1,2,3,4,5$ respectively, and the blue chips are numbered $1,2,3$ respectively. If two chips are to be drawn at random and without replacement, find the probability that these chips are have either the same number or the same color.
Solution: Let R denote the event that the two chips are red. Then the assumption that the chips are drawn at random and without replacement implies that

$$
\operatorname{Pr}(R)=\frac{\binom{5}{2}}{\binom{8}{2}}=\frac{5}{14}
$$

Similarly, if B denotes the event that both chips are blue, then

$$
\operatorname{Pr}(B)=\frac{\binom{3}{2}}{\binom{8}{2}}=\frac{3}{28}
$$

It then follows that the probability that both chips are of the same color is

$$
\operatorname{Pr}(R \cup B)=\operatorname{Pr}(R)+\operatorname{Pr}(B)=\frac{13}{28}
$$

since R and B are mutually exclusive.
Let N denote the event that both chips show the same number. Then,

$$
\operatorname{Pr}(N)=\frac{3}{\binom{8}{2}}=\frac{3}{28}
$$

Finally, since $R \cup B$ and N are mutually exclusive, then the probability that the chips are have either the same number or the same color is

$$
\operatorname{Pr}(R \cup B \cup N)=\operatorname{Pr}(R \cup B)+\operatorname{Pr}(N)=\frac{13}{28}+\frac{3}{28}=\frac{16}{28}=\frac{2}{7}
$$

2. A person has purchased 10 of 1,000 tickets sold in a certain raffle. To determine the five prize winners, 5 tickets are drawn at random and without replacement. Compute the probability that this person will win at least one prize.

Solution: Let N denote the event that the person will not win any prize. Then

$$
\begin{equation*}
\operatorname{Pr}(N)=\frac{\binom{995}{10}}{\binom{1000}{10}} \tag{1}
\end{equation*}
$$

that is, the probability of purchasing 10 non-winning tickets.
It follows from (1) that

$$
\begin{align*}
\operatorname{Pr}(N) & =\frac{(990)(989)(988)(987)(986)}{(1000)(999)(998)(997)(996)} \\
& =\frac{435841667261}{458349513900} \tag{2}\\
& \approx 0.9509 .
\end{align*}
$$

Thus, using the result in (2), the probability of the person winning at least one of the prizes is

$$
\begin{aligned}
\operatorname{Pr}\left(N^{c}\right) & =1-\operatorname{Pr}(N) \\
& \approx 1-0.9509 \\
& =0.0491
\end{aligned}
$$

or about 4.91%.
3. Let $(\mathcal{C}, \mathcal{B}, \operatorname{Pr})$ denote a probability space, and let E_{1}, E_{2} and E_{3} be mutually exclusive events in \mathcal{B}. Find $\operatorname{Pr}\left[\left(E_{1} \cup E_{2}\right) \cap E_{3}\right]$ and $\operatorname{Pr}\left(E_{1}^{c} \cup E_{2}^{c}\right)$.
Solution: Since E_{1}, E_{2} and E_{3} are mutually disjoint events, it follows that $\left(E_{1} \cup E_{2}\right) \cap E_{3}=\emptyset$; so that

$$
\operatorname{Pr}\left[\left(E_{1} \cup E_{2}\right) \cap E_{3}\right]=0
$$

Next, use De Morgan's law to compute

$$
\begin{aligned}
\operatorname{Pr}\left(E_{1}^{c} \cup E_{2}^{c}\right) & =\operatorname{Pr}\left(\left[E_{1} \cap E_{2}\right]^{c}\right) \\
& =\operatorname{Pr}\left(\emptyset^{c}\right) \\
& =\operatorname{Pr}(\mathcal{C}) \\
& =1
\end{aligned}
$$

4. Let $(\mathcal{C}, \mathcal{B}, \operatorname{Pr})$ denote a probability space, and let A and B events in \mathcal{B}. Show that

$$
\begin{equation*}
\operatorname{Pr}(A \cap B) \leq \operatorname{Pr}(A) \leq \operatorname{Pr}(A \cup B) \leq \operatorname{Pr}(A)+\operatorname{Pr}(B) \tag{3}
\end{equation*}
$$

Solution: Since $A \cap B \subseteq A$, it follows that

$$
\begin{equation*}
\operatorname{Pr}(A \cap B) \leqslant \operatorname{Pr}(A) \tag{4}
\end{equation*}
$$

Similarly, since $A \subseteq A \cup B$, we get that

$$
\begin{equation*}
\operatorname{Pr}(A) \leqslant \operatorname{Pr}(A \cup B) \tag{5}
\end{equation*}
$$

Next, use the identity

$$
\operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B)
$$

and fact that that

$$
\operatorname{Pr}(A \cap B) \geqslant 0
$$

to obtain that

$$
\begin{equation*}
\operatorname{Pr}(A \cup B) \leqslant \operatorname{Pr}(A)+\operatorname{Pr}(B) \tag{6}
\end{equation*}
$$

Finally, combine (4), (5) and (6) to obtain (3).
5 . Let $(\mathcal{C}, \mathcal{B}, \operatorname{Pr})$ denote a probability space, and let E_{1}, E_{2} and E_{3} be mutually independent events in \mathcal{B} with probabilities $\frac{1}{2}, \frac{1}{3}$ and $\frac{1}{4}$, respectively. Compute the exact value of $\operatorname{Pr}\left(E_{1} \cup E_{2} \cup E_{3}\right)$.
Solution: First, use De Morgan's law to compute

$$
\begin{equation*}
\operatorname{Pr}\left[\left(E_{1} \cup E_{2} \cup E_{3}\right)^{c}\right]=\operatorname{Pr}\left(E_{1}^{c} \cap E_{2}^{c} \cap E_{3}^{c}\right) \tag{7}
\end{equation*}
$$

Then, since E_{1}, E_{2} and E_{3} are mutually independent events, it follows from (7) that

$$
\operatorname{Pr}\left[\left(E_{1} \cup E_{2} \cup E_{3}\right)^{c}\right]=\operatorname{Pr}\left(E_{1}^{c}\right) \cdot \operatorname{Pr}\left(E_{2}^{c}\right) \cdot \operatorname{Pr}\left(E_{3}^{c}\right)
$$

so that

$$
\begin{aligned}
\operatorname{Pr}\left[\left(E_{1} \cup E_{2} \cup E_{3}\right)^{c}\right] & =\left(1-\operatorname{Pr}\left(E_{1}\right)\right)\left(1-\operatorname{Pr}\left(E_{2}\right)\right)\left(1-\operatorname{Pr}\left(E_{3}\right)\right) \\
& =\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right) \\
& =\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4},
\end{aligned}
$$

so that

$$
\begin{equation*}
\operatorname{Pr}\left[\left(E_{1} \cup E_{2} \cup E_{3}\right)^{c}\right]=\frac{1}{4} \tag{8}
\end{equation*}
$$

It then follows from (8) that

$$
\operatorname{Pr}\left(E_{1} \cup E_{2} \cup E_{3}\right)=1-\operatorname{Pr}\left[\left(E_{1} \cup E_{2} \cup E_{3}\right)^{c}\right]=\frac{3}{4}
$$

6. Let $(\mathcal{C}, \mathcal{B}, \operatorname{Pr})$ denote a probability space, and let E_{1}, E_{2} and E_{3} be mutually independent events in \mathcal{B} with $\operatorname{Pr}\left(E_{1}\right)=\operatorname{Pr}\left(E_{2}\right)=\operatorname{Pr}\left(E_{3}\right)=\frac{1}{4}$. Compute $\operatorname{Pr}\left[\left(E_{1}^{c} \cap E_{2}^{c}\right) \cup E_{3}\right]$.
Solution: First, use De Morgan's law to compute

$$
\begin{equation*}
\operatorname{Pr}\left[\left(\left(E_{1}^{c} \cap E_{2}^{c}\right) \cup E_{3}\right)^{c}\right]=\operatorname{Pr}\left[\left(E_{1}^{c} \cap E_{2}^{c}\right)^{c} \cap E_{3}^{c}\right] \tag{9}
\end{equation*}
$$

Next, use the assumption that E_{1}, E_{2} and E_{3} are mutually independent events to obtain from (9) that

$$
\begin{equation*}
\operatorname{Pr}\left[\left(\left(E_{1}^{c} \cap E_{2}^{c}\right) \cup E_{3}\right)^{c}\right]=\operatorname{Pr}\left[\left(E_{1}^{c} \cap E_{2}^{c}\right)^{c}\right] \cdot \operatorname{Pr}\left[E_{3}^{c}\right], \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
\operatorname{Pr}\left[E_{3}^{c}\right]=1-\operatorname{Pr}\left(E_{3}\right)=\frac{3}{4} \tag{11}
\end{equation*}
$$

and

$$
\begin{align*}
\operatorname{Pr}\left[\left(E_{1}^{c} \cap E_{2}^{c}\right)^{c}\right] & =1-\operatorname{Pr}\left[E_{1}^{c} \cap E_{2}^{c}\right] \tag{12}\\
& =1-\operatorname{Pr}\left[E_{1}^{c}\right] \cdot \operatorname{Pr}\left[E_{2}^{c}\right],
\end{align*}
$$

by the independence of E_{1} and E_{2}.
It follows from the calculations in (12) that

$$
\begin{align*}
\operatorname{Pr}\left[\left(E_{1}^{c} \cap E_{2}^{c}\right)^{c}\right] & =1-\left(1-\operatorname{Pr}\left[E_{1}\right]\right)\left(1-\operatorname{Pr}\left[E_{2}\right]\right) \\
& =1-\left(1-\frac{1}{4}\right)\left(1-\frac{1}{4}\right) \\
& =1-\frac{3}{4} \cdot \frac{3}{4} \tag{13}\\
& =\frac{7}{16}
\end{align*}
$$

Substitute (11) and the result of the calculations in (13) into (10) to obtain

$$
\begin{equation*}
\operatorname{Pr}\left[\left(\left(E_{1}^{c} \cap E_{2}^{c}\right) \cup E_{3}\right)^{c}\right]=\frac{7}{16} \cdot \frac{3}{4}=\frac{21}{64} . \tag{14}
\end{equation*}
$$

Finally, use the result in (14) to compute

$$
\begin{aligned}
\operatorname{Pr}\left[\left(E_{1}^{c} \cap E_{2}^{c}\right) \cup E_{3}^{c}\right] & =1-\operatorname{Pr}\left[\left(\left(E_{1}^{c} \cap E_{2}^{c}\right) \cup E_{3}\right)^{c}\right] \\
& =1-\frac{21}{64} \\
& =\frac{43}{64}
\end{aligned}
$$

7. A machine produces parts that are either good (90\%), slightly defective (2%), or obviously defective (8%). Produced parts get passed through an automatic inspection machine, which is able to detect any part that is obviously defective and discard it.
(a) If a part passes the inspection, what is the probability that is is a good part?
Solution: Let G denote the event that the machine produces a good part, S denote the event that the machine produces a slightly defective part, and D the event that the machine produces an obviously defective part. We are then given that

$$
\operatorname{Pr}(G)=0.90, \quad \operatorname{Pr}(S)=0.02 \quad \text { and } \quad \operatorname{Pr}(D)=0.08
$$

A part passes inspection if it is good part or if it is slightly defective; in other words, if the complement of event D occurs (note that $D^{c}=G \cup S$). Thus, the probability that a part is good, given that it passed inspection is the conditional probability

$$
\begin{aligned}
\operatorname{Pr}\left(G \mid D^{c}\right) & =\frac{\operatorname{Pr}\left(G \cap D^{c}\right)}{\operatorname{Pr}\left(D^{c}\right)} \\
& =\frac{\operatorname{Pr}(G)}{\operatorname{Pr}(G \cup S)} \\
& =\frac{0.90}{0.92} \\
& =\frac{45}{46}
\end{aligned}
$$

(b) Given that a part passes the inspection, what is the probability that it is slightly defective?
Solution: In this case we compute the conditional probability

$$
\begin{aligned}
\operatorname{Pr}\left(S \mid D^{c}\right) & =\frac{\operatorname{Pr}\left(S \cap D^{c}\right)}{\operatorname{Pr}\left(D^{c}\right)} \\
& =\frac{\operatorname{Pr}(S)}{\operatorname{Pr}(G \cup S)} \\
& =\frac{0.02}{0.92} \\
& =\frac{1}{46}
\end{aligned}
$$

(c) Assume that a one-year warranty is given for the parts that are shipped to customers. Suppose that a good part fails within the first year with probability 0.01 , while a slightly defective part fails within the first year with probability 0.10 . What is the probability that a customer receives a part that fails within the first year and is therefore entitled to a warranty replacement?
Solution: Let F denote the event that a part that has passed inspection will fail within the first year after shipping. Let G_{I} denote the event that a good part has passed inspection and been shipped. From part (a) we have that

$$
\operatorname{Pr}\left(G_{I}\right)=\operatorname{Pr}\left(G \mid D^{c}\right)=\frac{45}{46}
$$

Similarly, denoting by S_{I} the event that a slightly defective part has passed inspection, we have from part (b) that

$$
\operatorname{Pr}\left(S_{I}\right)=\operatorname{Pr}\left(S \mid D^{c}\right)=\frac{1}{46} .
$$

We are given that

$$
\operatorname{Pr}\left(F \mid G_{I}\right)=0.01 \quad \text { and } \quad \operatorname{Pr}\left(F \mid S_{I}\right)=0.10
$$

It then follows from the Law of Total Probability that

$$
\begin{aligned}
\operatorname{Pr}(F) & =\operatorname{Pr}\left(G_{I}\right) \cdot \operatorname{Pr}\left(F \mid G_{I}\right)+\operatorname{Pr}\left(S_{I}\right) \cdot \operatorname{Pr}\left(F \mid S_{I}\right) \\
& =\frac{45}{46} \cdot(0.01)+\frac{1}{46} \cdot(0.10) \\
& \doteq 0.0112
\end{aligned}
$$

Thus, the probability that a customer receives a part that fails within the first year is about 1.12%.
8. Toss a fair coin three times in a row. Let A denote the event that either the three tosses yield three heads or three tails; B the event that at least two heads come up; and C the event that at most two tails come up. Out of the pairs of events: $(A, B),(A, C)$, and (B, C), determine the ones that are independent and the ones that are dependent. Explain your reasoning.
Solution: The sample space for this experiment is

$$
\mathcal{C}=\{H H H, H H T, H T H, H T T, T H H, T H T, T T H, T T T\} .
$$

The events A, B and C are

$$
\begin{gathered}
A=\{H H H, T T T\}, \\
B=\{H H H, H H T, H T H, T H H\},
\end{gathered}
$$

and

$$
C=\{H H H, H H T, H T H, H T T, T H H, T H T, T T H\}
$$

respectively. Since all the elements of \mathcal{C} are equally likely, it follows that

$$
\operatorname{Pr}(A)=\frac{1}{4}, \quad \operatorname{Pr}(B)=\frac{1}{2}, \quad \text { and } \quad \operatorname{Pr}(C)=\frac{7}{8}
$$

Note that $A \cap B=\{H H H\}$, so that

$$
\operatorname{Pr}(A \cap B)=\frac{1}{8}=\frac{1}{4} \cdot \frac{1}{2}=\operatorname{Pr}(A) \cdot \operatorname{Pr}(B)
$$

thus, A and B are independent.
Next, compute $A \cap C=\{H H H\}$, so that

$$
\operatorname{Pr}(A \cap C)=\frac{1}{8} \neq \frac{1}{4} \cdot \frac{7}{8}=\operatorname{Pr}(A) \cdot \operatorname{Pr}(C)
$$

thus, A and C are not independent.
Finally, compute $B \cap C=\{H H H, H H T, H T H, T H H\}$, so that

$$
\operatorname{Pr}(B \cap C)=\frac{1}{2} \neq \frac{1}{2} \cdot \frac{7}{8}=\operatorname{Pr}(B) \cdot \operatorname{Pr}(C)
$$

thus, B and C are not independent.
9. A bowl contains 10 chips of the same size and shape. One and only one of these chips is red. Draw chips from the bowl at random, one at a time and without replacement, until the red chip is drawn. Let X denote the number of draws needed to get the red chip. Determine the pmf of X and compute $\operatorname{Pr}(X \leq 4)$.
Solution: Compute

$$
\begin{aligned}
\operatorname{Pr}(X=1) & =\frac{1}{10} \\
\operatorname{Pr}(X=2) & =\frac{9}{10} \cdot \frac{1}{9}=\frac{1}{10} \\
\operatorname{Pr}(X=3) & =\frac{9}{10} \cdot \frac{8}{9} \cdot \frac{1}{8}=\frac{1}{10} \\
\vdots & \\
\operatorname{Pr}(X=10) & =\frac{1}{10}
\end{aligned}
$$

Thus,

$$
p_{X}(k)= \begin{cases}\frac{1}{10} & \text { for } k=1,2, \ldots, 10 \tag{15}\\ 0 & \text { elsewhere }\end{cases}
$$

Next, use (15) to compute

$$
\operatorname{Pr}(X \leqslant 4)=\sum_{k=1}^{4} p_{X}(k)=\frac{4}{10}=\frac{2}{5}
$$

10. Let X have pmf given by $p_{X}(x)=\frac{1}{3}$ for $x=1,2,3$ and $p(x)=0$ elsewhere. Give the pmf of $Y=2 X+1$.

Solution: Note that the possible values for Y are 3,5 and 7
Compute

$$
\operatorname{Pr}(Y=3)=\operatorname{Pr}(2 X+1=3)=\operatorname{Pr}(X=1)=\frac{1}{3}
$$

Similarly, we get that

$$
\operatorname{Pr}(Y=5)=\operatorname{Pr}(X=2)=\frac{1}{3}
$$

and

$$
\operatorname{Pr}(Y=7)=\operatorname{Pr}(X=3)=\frac{1}{3}
$$

Thus,

$$
p_{Y}(k)= \begin{cases}\frac{1}{3} & \text { for } k=3,5,7 \\ 0 & \text { elsewhere }\end{cases}
$$

11. Let X have pmf given by $p_{X}(x)=\left(\frac{1}{2}\right)^{x}$ for $x=1,2,3, \ldots$ and $p_{X}(x)=0$ elsewhere. Give the pmf of $Y=X^{3}$.
Solution: Compute, for $y=k^{3}$, for $k=1,2,3, \ldots$,

$$
\operatorname{Pr}(Y=y)=\operatorname{Pr}\left(X^{3}=k^{3}\right)=\operatorname{Pr}(X=k)=\left(\frac{1}{2}\right)^{k}
$$

so that

$$
\operatorname{Pr}(Y=y)=\left(\frac{1}{2}\right)^{y^{1 / 3}}, \quad \text { for } y=k^{3}, \quad \text { for some } k=1,2,3, \ldots
$$

Thus,

$$
p_{Y}(y)= \begin{cases}\left(\frac{1}{2}\right)^{y^{1 / 3}}, & \text { for } y=k^{3}, \\ 0 & \text { for some } k=1,2,3, \ldots \\ 0 & \text { elsewhere. }\end{cases}
$$

12. Let $f(x)=\left\{\begin{array}{ll}\frac{1}{x^{2}} & \text { if } 1<x<\infty ; \\ 0 & \text { if } x \leq 1,\end{array}\right.$ and define a probability on the Borel σ-field of the real line \mathbb{R} by $\operatorname{Pr}[(a, b)]=\int_{a}^{b} f(x) d x$, for all intervals, (a, b). If E_{1} denote the interval $(1,2)$ and E_{2} the interval $(4,5)$, compute $\operatorname{Pr}\left(E_{1}\right)$, $\operatorname{Pr}\left(E_{2}\right), \operatorname{Pr}\left(E_{1} \cup E_{2}\right)$ and $\operatorname{Pr}\left(E_{1} \cap E_{2}\right)$.
Solution: Compute

$$
\begin{gathered}
\operatorname{Pr}\left(E_{1}\right)=\int_{1}^{2} \frac{1}{x^{2}} d x=-\left.\frac{1}{x}\right|_{1} ^{2}=\frac{1}{2}, \\
\operatorname{Pr}\left(E_{2}\right)=\int_{4}^{5} \frac{1}{x^{2}} d x=-\left.\frac{1}{x}\right|_{4} ^{5}=\frac{1}{20} \\
\operatorname{Pr}\left(E_{1} \cup E_{2}\right)=\operatorname{Pr}\left(E_{1}\right)+\operatorname{Pr}\left(E_{2}\right)=\frac{11}{20},
\end{gathered}
$$

since E_{1} and E_{2} are mutually exclusive, and

$$
\operatorname{Pr}\left(E_{1} \cap E_{2}\right)=0
$$

since E_{1} and E_{2} are mutually exclusive.
13. A mode of a distribution of a random discrete variable X is a value of x that maximizes the pmf of X. If there is only one such value, it is called the mode of the distribution.
Let X have pmf given by $p(x)=\left(\frac{1}{2}\right)^{x}$ for $x=1,2,3, \ldots$, and $p(x)=0$ elsewhere. Compute a mode of the distribution.
Solution: Note that $p(x)$ is decreasing; so, $p(x)$ is maximized when $x=1$. Thus, 1 is the mode of the distribution of X.
14. Let $f(x)=\left\{\begin{array}{ll}c x(1-x), & \text { if } 0<x<1 ; \\ 0 & \text { elsewhere },\end{array}\right.$ where c is a positive constant.
(a) Determine the value of c so that $\operatorname{Pr}[(a, b)]=\int_{a}^{b} f(x) d x$, for all intervals, (a, b), defines a probability on the Borel σ-field of the real line \mathbb{R}.

Solution: We choose c so that $\operatorname{Pr}(\mathbb{R})=1$, where

$$
\begin{aligned}
\operatorname{Pr}(\mathbb{R}) & =\int_{-\infty}^{\infty} f(x) d x \\
& =\int_{0}^{1} c x(1-x) d x \\
& =c \int_{0}^{1}\left[x-x^{2}\right] d x \\
& =c\left[\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{1} \\
& =\frac{c}{6}
\end{aligned}
$$

It then follows that $c=6$.
(b) For each $x \in \mathbb{R}$, define $F(x)=\operatorname{Pr}[(-\infty, x]]$. Compute F and sketch its graph. Find the value of x for which $F(x)=0.5$.
Solution: We compute $F(x)=\int_{-\infty}^{x} f(t) d t$, for $x \in \mathbb{R}$, where

$$
f(t)= \begin{cases}6 t(1-t), & \text { if } 0<t<1 \\ 0, & \text { elsewhere }\end{cases}
$$

If $x \leqslant 0$ we have that $f(t)=0$ for all $t \leqslant x$, so that

$$
F(x)=0, \quad \text { for } x \leqslant 0
$$

If $0<x \leqslant 1$, we get that

$$
\begin{aligned}
F(x) & =\int_{0}^{x} 6 t(1-t) d t \\
& =6\left[\frac{t^{2}}{2}-\frac{t^{3}}{3}\right]_{0}^{x} \\
& =3 x^{2}-2 x^{3} .
\end{aligned}
$$

Finally, if $x \geqslant 1$, we have that

$$
F(x)=1
$$

Putting all these calculations together we get

$$
F(x)= \begin{cases}0, & \text { if } x \leqslant 0 \\ 3 x^{2}-2 x^{3}, & \text { if } 0<x \leqslant 1 ; \\ 1, & \text { if } x>1\end{cases}
$$

A sketch of the graph of F is found in Figure 1.

Figure 1: Sketch of $F(x)$ in Problem 14
Observe that $F(0.5)=3\left(\frac{1}{2}\right)^{2}-2\left(\frac{1}{2}\right)^{3}=\frac{3}{4}-\frac{1}{4}=\frac{1}{2}$, so that $x=\frac{1}{2}$ is the unique value of x for which $F(x)=0.5$.

