Review Problems for Exam 2

1. Let $f_{X}(x)=\left\{\begin{array}{ll}\frac{1}{x^{2}} & \text { if } 1<x<\infty ; \\ 0 & \text { if } x \leq 1,\end{array}\right.$ be the pdf of a random variable X. If E_{1} denote the interval $(1,2)$ and E_{2} the interval $(4,5)$, compute $\operatorname{Pr}\left(E_{1}\right), \operatorname{Pr}\left(E_{2}\right)$, $\operatorname{Pr}\left(E_{1} \cup E_{2}\right)$ and $\operatorname{Pr}\left(E_{1} \cap E_{2}\right)$.
2. Let X have pdf $f_{X}(x)= \begin{cases}2 x, & \text { if } 0<x<1 ; \\ 0, & \text { elsewhere }\end{cases}$

Compute the probability that X is at least $3 / 4$, given that X is at least $1 / 2$.
3. Divide a segment at random into two parts. Find the probability that the largest segment is at least three times the shorter.
4. Let X have pdf $f_{X}(x)= \begin{cases}x^{2} / 9, & \text { if } 0<x<3 ; \\ 0, & \text { elsewhere. }\end{cases}$

Find the pdf of $Y=X^{3}$.
5. Let X and Y be independent $\operatorname{Normal}(0,1)$ random variables. Put $Z=\frac{Y}{X}$. Compute the distribution functions $F_{z}(z)$ and $f_{z}(z)$.
6. A random point (X, Y) is distributed uniformly on the square with vertices $(-1,-1),(1,-1),(1,1)$ and $(-1,1)$.
(a) Give the joint pdf for X and Y.
(b) Compute the following probabilities: (i) $P\left(X^{2}+Y^{2}<1\right)$, (ii) $P(2 X-Y>$ $0)$, (iii) $P(|X+Y|<2)$.
7. Prove that if the joint cdf of X and Y satisfies

$$
F_{X, Y}(x, y)=F_{X}(x) F_{Y}(y)
$$

then for any pair of intervals (a, b) and (c, d),

$$
P(a<X \leq b, c<Y \leq d)=P(a<X \leq b) P(c<Y \leq d)
$$

$X \backslash Y$	2	3	4
1	$\frac{1}{12}$	$\frac{1}{6}$	0
2	$\frac{1}{6}$	0	$\frac{1}{3}$
3	$\frac{1}{12}$	$\frac{1}{6}$	0

Table 1: Joint Probability Distribution for X and $Y, p_{(X, Y)}$
8. The random pair (X, Y) has the joint distribution shown in Table 1.
(a) Show that X and Y are not independent.
(b) Give a probability table for random variables U and V that have the same marginal distributions as X and Y, respectively, but are independent.
9. Let X denote the number of trials needed to obtain the first head, and let Y be the number of trials needed to get two heads in repeated tosses of a fair coin. Are A and Y independent random variables?
10. Let $X \sim \operatorname{Normal}(0,1)$ and put $Y=X^{2}$. Find the pdf for Y.
11. Let X and Y be independent $\operatorname{Normal}(0,1)$ random variables.

Compute $\operatorname{Pr}\left(X^{2}+Y^{2}<1\right)$.
12. Suppose that X and Y are independent random variables such that $X \sim$ $\operatorname{Uniform}(0,1)$ and $Y \sim \operatorname{Exponential}(1)$.
(a) Let $Z=X+Y$. Find F_{Z} and f_{Z}.
(b) Let $U=Y / X$. Find F_{U} and f_{U}.
13. Let $X \sim$ Exponential(1), and define Y to be the integer part of $X+1$; that is, $Y=i+1$ if and only if $i \leq X<i+1$, for $i=0,1,2, \ldots$ Find the pmf of Y, and deduce that $Y \sim \operatorname{Geometric}(p)$ for some $0<p<1$. What is the value of p ?
14. Let $X_{1}, X_{2}, X_{3}, \ldots, X_{n}$ be independent identically distributed Bernoulli random variables with parameter p, with $0<p<1$. Define

$$
Y=X_{1}+X_{2}+\cdots+X_{n}
$$

Use moment generating functions to determine the distribution of Y.

