Solutions to Exam 2

1. In each of the following, X and Y denote independent random variables. In each case, set $Z=X+Y$ and compute the mgf, ψ_{z}, of Z; then use ψ_{z} to determine the distribution of Z.
(a) $X \sim \operatorname{Binomial}(n, p)$ and $Y \sim \operatorname{Binomial}(m, p)$, where m and n are positive integers and $0<p<1$.
Solution: Compute

$$
\begin{aligned}
\psi_{z}(t) & =E\left(e^{t Z}\right) \\
& =E\left(e^{t(X+Y)}\right) \\
& =E\left(e^{t X+t Y}\right) \\
& =E\left(e^{t X} \cdot e^{t Y}\right)
\end{aligned}
$$

so that

$$
\begin{equation*}
\psi_{z}(t)=E\left(e^{t X}\right) \cdot E\left(e^{t Y}\right) \tag{1}
\end{equation*}
$$

since we are assuming that X and Y are independent.
It follows from (1) and the definition of the moment generating function that

$$
\begin{equation*}
\psi_{Z}(t)=\psi_{X}(t) \cdot \psi_{Y}(t) \tag{2}
\end{equation*}
$$

For the case in which $X \sim \operatorname{Binomial}(n, p)$ and $Y \sim \operatorname{Binomial}(m, p)$, we obtain from (2) that

$$
\psi_{z}(t)=\left(p e^{t}+1-p\right)^{n} \cdot\left(p e^{t}+1-p\right)^{m}, \quad \text { for } t \in \mathbb{R}
$$

so that

$$
\begin{equation*}
\psi_{z}(t)=\left(p e^{t}+1-p\right)^{n+m}, \quad \text { for } t \in \mathbb{R} \tag{3}
\end{equation*}
$$

It follows from (3) and the uniqueness theorem for moment generating functions that

$$
Z \sim \operatorname{Binomial}(n+m, p)
$$

(b) $X \sim \operatorname{Normal}(\mu, 1 / \sqrt{2})$ and $Y \sim \operatorname{Normal}(-\mu, 1 / \sqrt{2})$, where μ is a real parameter.
Solution: We proceed as in part (a).

For the case in which $X \sim \operatorname{Normal}(\mu, 1 / \sqrt{2})$ and $Y \sim \operatorname{Normal}(-\mu, 1 / \sqrt{2})$, it follows from (2) that

$$
\begin{aligned}
\psi_{z}(t) & =e^{\mu t+\frac{1}{2} \cdot \frac{1}{\sqrt{2}} t^{2}} \cdot e^{-\mu t+\frac{1}{2} \cdot \frac{1}{\sqrt{2}} t^{2}} \\
& =e^{\frac{1}{\sqrt{2}} t^{2}}
\end{aligned}
$$

so that

$$
\psi_{z}(t)=e^{\frac{1}{2} \cdot \frac{2}{\sqrt{2}} t^{2}}, \quad \text { for } t \in \mathbb{R}
$$

or

$$
\begin{equation*}
\psi_{z}(t)=e^{\frac{1}{2} \cdot \sqrt{2} t^{2}}, \quad \text { for } t \in \mathbb{R} \tag{4}
\end{equation*}
$$

It follows from (4) and the uniqueness theorem for moment generating functions that

$$
Z \sim \operatorname{Normal}(0, \sqrt{2})
$$

2. The moment generating function of a random variable, X, is given by

$$
\psi_{x}(t)=\frac{1}{1-2 t}, \quad \text { for } t<\frac{1}{2} .
$$

(a) Compute $E(X)$ and $\operatorname{Var}(X)$.

Solution: It follows from the uniqueness theorem for moment generating functions that X has an Exponential(2) distribution, so that

$$
E(X)=2 \quad \text { and } \quad \operatorname{Var}(X)=4
$$

(b) Give the distribution of X and use it to find a value of m for which

$$
\operatorname{Pr}(X \leqslant m)=\frac{1}{2}
$$

Solution: Since X has an Exponential(2) distribution, it follows that its pdf is given by

$$
f_{X}(x)= \begin{cases}\frac{1}{2} e^{-x / 2}, & \text { for } x>0 \\ 0, & \text { for } x \leqslant 0\end{cases}
$$

Using this pdf we compute

$$
\operatorname{Pr}(X \leqslant m)=1-e^{-m / 2}
$$

so that

$$
\operatorname{Pr}(X \leqslant m)=\frac{1}{2}
$$

implies that

$$
e^{-m / 2}=\frac{1}{2}
$$

from which we get that

$$
m=2 \ln 2 .
$$

3. Assume that the joint pdf of a random vector (X, Y) is given by the function

$$
f(x, y)= \begin{cases}c\left(2-x y^{2}\right), & \text { for } 1 \leqslant x \leqslant 2 \text { and } 0 \leqslant y \leqslant 1 \\ 0, & \text { elsewhere }\end{cases}
$$

where c is a positive constant.
(a) Determine the value of c.

Solution: Evaluate the integral

$$
\begin{aligned}
\iint_{\mathbb{R}^{2}} f(x, y) d x d y & =c \int_{1}^{2} \int_{0}^{1}\left(2-x y^{2}\right) d y d x \\
& =c \int_{1}^{2}\left[2 y-\frac{1}{3} x y^{3}\right]_{0}^{1} d x \\
& =c \int_{1}^{2}\left(2-\frac{1}{3} x\right) d x \\
& =c\left[2 x-\frac{1}{6} x^{2}\right]_{1}^{2} \\
& =c\left(\frac{10}{3}-\frac{11}{6}\right)
\end{aligned}
$$

so that

$$
\iint_{\mathbb{R}^{2}} f(x, y) d x d y=c \cdot \frac{3}{2}
$$

Thus, since we are given that f is a pdf, $c=\frac{2}{3}$.
(b) Determine the marginal distribution, f_{X}, and compute $E(X)$.

Solution: Compute, for $1<x<2$,

$$
\begin{aligned}
f_{X}(x) & =\int_{-\infty}^{\infty} f(x, y) d y \\
& =\frac{2}{3} \int_{0}^{1}\left(2-x y^{2}\right) d y \\
& =\frac{2}{3}\left[2 y-\frac{1}{3} x y^{3}\right]_{0}^{1}
\end{aligned}
$$

so that

$$
f_{X}(x)= \begin{cases}\frac{2}{3}\left(2-\frac{x}{3}\right), & \text { for } 1<x<2 \\ 0, & \text { elsewhere }\end{cases}
$$

To find the expected value of X, compute

$$
\begin{aligned}
E(X) & =\int_{-\infty}^{\infty} x f_{X}(x) d x \\
& =\int_{1}^{2} x \cdot \frac{2}{3}\left(2-\frac{x}{3}\right) d x \\
& =\frac{2}{3} \int_{1}^{2}\left(2 x-\frac{x^{2}}{3}\right) d x \\
& =\frac{2}{3}\left[x^{2}-\frac{x^{3}}{9}\right]_{1}^{2} \\
& =\frac{2}{3}\left[4-\frac{8}{9}-\left(1-\frac{1}{9}\right)\right]
\end{aligned}
$$

so that $E(X)=\frac{40}{27}$.
4. Let X denote the time a patient spends at a waiting room of a doctor's office waiting to be seen by a physician, and Y the time the physician actually spends with the patient. Assume that X and Y are independent random variables with
$X \sim$ Exponential(40) and $Y \sim \operatorname{Exponetial(20),~where~} X$ and Y are measured in minutes.
(a) On average, how long will a patient spend at the waiting room, and how long does the patient spends being seen by a doctor?

Answer: $E(X)=40$ and $E(Y)=20$. Thus, on average, a patient spends 40 minutes in the waiting room, and 20 minutes being seen by a doctor.
(b) What is the expected value of the time a patient will spend at the doctor's office? Explain your reasoning.

Answer: $E(X+Y)=E(X)+E(Y)=40+20=60$. Thus, on average, a patient spends 60 minutes the doctor's office.
(c) Give the joint distribution of (X, Y).

Solution: Since X and Y are independent,

$$
f_{(X, Y)}(x, y)=f_{X}(x) \cdot f_{Y}(y),
$$

where

$$
f_{X}(x)= \begin{cases}\frac{1}{40} e^{-x / 40}, & \text { for } x>0 \\ 0, & \text { for } x \leqslant 0\end{cases}
$$

and

$$
f_{Y}(y)= \begin{cases}\frac{1}{20} e^{-y / 20}, & \text { for } y>0 \\ 0, & \text { for } y \leqslant 0\end{cases}
$$

It then follows that

$$
f_{(X, Y)}(x, y)= \begin{cases}\frac{1}{800} e^{-x / 40} e^{-y / 20}, & \text { for } x>0 \text { and } y>0 \\ 0, & \text { elsewhere }\end{cases}
$$

(d) Set up (but DO NOT EVALUATE) the iterated double integral that yields the probability that a patient will spend less than an hour at a doctor's office.

Solution: We want

$$
\operatorname{Pr}(X+Y<60)=\iint_{A} f_{(X, Y)}(x, y) d x d y
$$

where $A=\left\{(x, y) \in \mathbb{R}^{2} \mid x+y<60\right\}$.
Using the definition of the joint pdf for (X, Y) found in the previous part we get

$$
\operatorname{Pr}(X+Y<60)=\int_{0}^{60} \int_{0}^{60-x} \frac{1}{800} e^{-x / 40} e^{-y / 20} d y d x
$$

