Solutions to Review Problems for Exam 3

1. Suppose that a book with n pages contains on average λ misprints per page. What is the probability that there will be at least m pages which contain more than k missprints?
Solution: Let Y denote the number of misprints in one page. Then, we may assume that Y follows a Poisson (λ) distribution; so that

$$
\operatorname{Pr}[Y=r]=\frac{\lambda^{r}}{r!} e^{-\lambda}, \quad \text { for } r=0,1,2, \ldots
$$

Thus, the probability that there will be more than k missprints in a given page is

$$
\begin{align*}
p & =\sum_{r=k+1}^{\infty} \operatorname{Pr}[Y=r] \\
& =\sum_{r=k+1}^{\infty} \frac{\lambda^{r}}{r!} e^{-\lambda} \tag{1}
\end{align*}
$$

Next, let X denote the number of the pages out of the n that contain more than k missprints. Then, $X \sim \operatorname{Binomial}(n, p)$, where p is as given in (1). Then the probability that there will be at least m pages which contain more than k missprints is

$$
\operatorname{Pr}[X \geqslant m]=\sum_{\ell=m}^{n}\binom{n}{\ell} p^{\ell}(1-p)^{n-\ell}
$$

where

$$
p=\sum_{r=k+1}^{\infty} \frac{\lambda^{r}}{r!} e^{-\lambda}
$$

2. Suppose that the total number of items produced by a certain machine has a Poisson distribution with mean λ, all items are produced independently of one another, and the probability that any given item produced by the machine will be defective is p.
Let X denote the number of defective items produced by the machine.
(a) Determine the marginal distribution of the number of defective items, X.

Solution: Let N denote the number of items produced by the machine. Then,

$$
\begin{equation*}
N \sim \operatorname{Poisson}(\lambda) \tag{2}
\end{equation*}
$$

so that

$$
\operatorname{Pr}[N=n]=\frac{\lambda^{n}}{n!} e^{-\lambda}, \quad \text { for } n=0,1,2, \ldots
$$

Now, since all items are produced independently of one another, and the probability that any given item produced by the machine will be defective is p, X has a conditional distribution (conditioned on $N=n$) that is $\operatorname{Binomial}(n, p)$; thus,

$$
\operatorname{Pr}[X=k \mid N=n]= \begin{cases}\binom{n}{k} p^{k}(1-p)^{n-k}, & \text { for } k=0,1,2, \ldots, n \tag{3}\\ 0 & \text { elsewhere }\end{cases}
$$

Then,

$$
\begin{aligned}
\operatorname{Pr}[X=k] & =\sum_{n=0}^{\infty} \operatorname{Pr}[X=k, N=n] \\
& =\sum_{n=0}^{\infty} \operatorname{Pr}[N=n] \cdot \operatorname{Pr}[X=k \mid N=n],
\end{aligned}
$$

where $\operatorname{Pr}[X=k \mid N=n]=0$ for $n<k$, so that, using (2) and (3),

$$
\begin{align*}
\operatorname{Pr}[X=k] & =\sum_{n=k}^{\infty} \frac{\lambda^{n}}{n!} e^{-\lambda} \cdot\binom{n}{k} p^{k}(1-p)^{n-k} \\
& =\frac{e^{-\lambda}}{k!} p^{k} \sum_{n=k}^{\infty} \lambda^{n} \frac{1}{(n-k)!}(1-p)^{n-k} \tag{4}
\end{align*}
$$

Next, make the change of variables $\ell=n-k$ in the last summation in (4) to get

$$
\operatorname{Pr}[X=k]=\frac{e^{-\lambda}}{k!} p^{k} \sum_{\ell=0}^{\infty} \lambda^{\ell+k} \frac{1}{\ell!}(1-p)^{\ell},
$$

so that

$$
\begin{aligned}
\operatorname{Pr}[X=k] & =\frac{(\lambda p)^{k}}{k!} e^{-\lambda} \sum_{\ell=0}^{\infty} \frac{1}{\ell!}[\lambda(1-p)]^{\ell} \\
& =\frac{(\lambda p)^{k}}{k!} e^{-\lambda} e^{\lambda(1-p)} \\
& =\frac{(\lambda p)^{k}}{k!} e^{-\lambda p}
\end{aligned}
$$

which shows that

$$
\begin{equation*}
X \sim \operatorname{Poisson}(\lambda p) \tag{5}
\end{equation*}
$$

(b) Let Y denote the number of non-defective items produced by the machine. Show that X and Y are independent random variables.
Solution: Similar calculations to those leading to (5) show that

$$
\begin{equation*}
Y \sim \operatorname{Poisson}(\lambda(1-p)) \tag{6}
\end{equation*}
$$

since the probability of an item coming out non-defective is $1-p$. Next, observe that $Y=N-X$ and compute the joint probability

$$
\begin{aligned}
\operatorname{Pr}[X=k, Y=\ell] & =\operatorname{Pr}[X=k, N=k+\ell] \\
& =\operatorname{Pr}[N=k+\ell] \cdot \operatorname{Pr}[X=k \mid N=k+\ell] \\
& =\frac{\lambda^{k+\ell}}{(k+\ell)!} e^{-\lambda} \cdot\binom{k+\ell}{k} p^{k}(1-p)^{\ell}
\end{aligned}
$$

by virtue of (2) and (3). Thus,

$$
\begin{aligned}
\operatorname{Pr}[X=k, Y=\ell] & =\frac{\lambda^{k+\ell}}{k!\ell!} e^{-\lambda} p^{k}(1-p)^{\ell} \\
& =\frac{\lambda^{k+\ell}}{k!\ell!} e^{-\lambda} p^{k}(1-p)^{\ell}
\end{aligned}
$$

where

$$
e^{-\lambda}=e^{-[p+(1-p)] \lambda}=e^{-p \lambda} \cdot e^{-(1-p) \lambda}
$$

Thus,

$$
\begin{aligned}
\operatorname{Pr}[X=k, Y=\ell] & =\frac{(p \lambda)^{k}}{k!} e^{-p \lambda} \cdot \frac{[(1-p) \lambda]^{\ell}}{\ell!} e^{-(1-p) \lambda} \\
& =p_{X}(k) \cdot p_{Y}(\ell),
\end{aligned}
$$

in view of (5) and (6). Hence, X and Y are independent.
3. Suppose that the proportion of color blind people in a certain population is 0.005 . Estimate the probability that there will be more than one color blind person in a random sample of 600 people from that population.
Solution: Set $p=0.005$ and $n=600$. Denote by Y the number of color blind people in the sample. The, we may assume that $Y \sim \operatorname{Binomial}(n, p)$. Since p is small and n is large, we may use the Poisson approximation to the binomial distribution to get

$$
\operatorname{Pr}[Y=k] \approx \frac{\lambda^{k}}{k!} e^{-\lambda},
$$

where $\lambda=n p=3$.
Then,

$$
\begin{aligned}
\operatorname{Pr}[Y>1] & =1-\operatorname{Pr}[Y \leqslant 1] \\
& \approx 1-e^{-3}-3 e^{-3} \\
& \approx 0.800852 .
\end{aligned}
$$

Thus, the probability that there will be more than one color blind person in a random sample of 600 people from that population is about 80%.
4. An airline sells 200 tickets for a certain flight on an airplane that has 198 seats because, on average, 1% of purchasers of airline tickets do not appear for departure of their flight. Estimate the probability that everyone who appears for the departure of this flight will have a seat.
Solution: Set $p=0.01, n=200$ and let Y denote the number of ticket purchasers that do not appear for departure. Then, we may assume that $Y \sim$ $\operatorname{Binomial}(n, p)$. We want to estimate the probability $\operatorname{Pr}[Y>2]$. Using the $\operatorname{Poisson}(\lambda)$, with $\lambda=n p=2$, approximation to the distribution of Y we get

$$
\begin{aligned}
\operatorname{Pr}[Y \geqslant 2] & =1-\operatorname{Pr}[Y \leqslant 1] \\
& \approx 1-e^{-2}-2 e^{-2} \\
& \approx 0.594 .
\end{aligned}
$$

Thus, the probability that everyone who appears for the departure of this flight will have a seat is about 59.4%.
5. Let X denote a positive random variable such that $\ln (X)$ has a $\operatorname{Normal}(0,1)$ distribution.
(a) Give the pdf of X and compute its expectation.

Solution: Set $Z=\ln (X)$, so that $Z \sim \operatorname{Normal}(0,1)$; thus,

$$
\begin{equation*}
f_{z}(y)=\frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2}, \quad \text { for } z \in \mathbb{R} \tag{7}
\end{equation*}
$$

Next, compute the cdf for X,

$$
F_{X}(x)=\operatorname{Pr}(X \leqslant x), \quad \text { for } x>0,
$$

to get

$$
\begin{aligned}
F_{X}(x) & =\operatorname{Pr}[\ln (X) \leqslant \ln (x)] \\
& =\operatorname{Pr}[Z \leqslant \ln (x)] \\
& =F_{Z}(\ln (x)),
\end{aligned}
$$

so that

$$
F_{X}(x)= \begin{cases}F_{Z}(\ln (x)), & \text { for } x>0 \tag{8}\\ 0 & \text { for } x \leqslant 0\end{cases}
$$

Differentiating (8) with respect to x, for $x>0$, we obtain

$$
f_{X}(x)=F_{z}^{\prime}(\ln (x)) \cdot \frac{1}{x}
$$

so that

$$
\begin{equation*}
f_{X}(x)=f_{Z}(\ln (x)) \cdot \frac{1}{x} \tag{9}
\end{equation*}
$$

where we have used the Chain Rule. Combining (7) and (9) yields

$$
f_{X}(x)= \begin{cases}\frac{1}{\sqrt{2 \pi} x} e^{-(\ln x)^{2} / 2}, & \text { for } x>0 \tag{10}\\ 0 & \text { for } x \leqslant 0\end{cases}
$$

In order to compute the expected value of X, use the pdf in (10) to get

$$
\begin{align*}
E(X) & =\int_{-\infty}^{\infty} x f_{X}(x) d x \\
& =\int_{0}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-(\ln x)^{2} / 2} d x \tag{11}
\end{align*}
$$

Make the change of variables $u=\ln x$ in the last integral in (11) to get $d u=\frac{1}{x} d x$, so that $d x=e^{u} d u$ and

$$
\begin{equation*}
E(X)=\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{u-u^{2} / 2} d u \tag{12}
\end{equation*}
$$

Complete the square in the exponent of the integrand in (12) to obtain

$$
\begin{equation*}
E(X)=e^{1 / 2} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-(u-1)^{2} / 2} d u \tag{13}
\end{equation*}
$$

Next, make the change of variables $w=u-1$ for the integral in (13) to get

$$
E(X)=e^{1 / 2} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-w^{2} / 2} d w=\sqrt{e}
$$

(b) Estimate $\operatorname{Pr}(X \leq 6.5)$.

Solution: Use the result in (8) to compute

$$
\operatorname{Pr}(X \leq 6.5)=F_{Z}(\ln (6.5)), \quad \text { where } Z \sim \operatorname{Normal}(0,1) .
$$

Thus,

$$
\operatorname{Pr}(X \leq 6.5) \doteq F_{z}(1.8718) \doteq 0.969383
$$

or about 97%.
6. Forty seven digits are chosen at random and with replacement from $\{0,1,2, \ldots, 9\}$. Estimate the probability that their average lies between 4 and 6 .
Solution: Let $X_{1}, X_{2}, \ldots, X_{n}$, where $n=47$, denote the 47 digits. Since the sampling is done with replacement, the random variables $X_{1}, X_{2}, \ldots, X_{n}$ are identically uniformly distributed over the digits $\{0,1,2, \ldots, 9\}$; in other words, $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from the discrete distribution with probability mass function

$$
p_{X}(k)= \begin{cases}\frac{1}{10}, & \text { for } k=0,1,2, \ldots, 9 \\ 0, & \text { elsewhere }\end{cases}
$$

Consequently, the mean of the distribution is

$$
\begin{equation*}
\mu=E(X)=\sum_{k=0}^{9} k p_{X}(k)=\frac{1}{10} \sum_{k=1}^{9} k=4.5 . \tag{14}
\end{equation*}
$$

In order to compute the variance of X, we first compute the second moment

$$
E\left(X^{2}\right)=\sum_{k=0}^{9} k^{2} p_{X}(k)=\frac{1}{10} \sum_{k=1}^{9} k^{2}=\frac{1}{10} \cdot \frac{9(9+1)(2(9)+1)}{6}
$$

so that

$$
E\left(X^{2}\right)=\frac{57}{2} .
$$

It then follows that the variance of the distribution is

$$
\sigma^{2}=E\left(X^{2}\right)-[E(X)]^{2}=\frac{57}{2}-\frac{81}{4} ;
$$

so that

$$
\sigma^{2}=\frac{33}{4}=8.25
$$

and

$$
\begin{equation*}
\sigma \doteq 2.87 \tag{15}
\end{equation*}
$$

We would like to estimate

$$
\operatorname{Pr}\left(4 \leqslant \bar{X}_{n} \leqslant 6\right)
$$

or

$$
\operatorname{Pr}\left(4-\mu \leqslant \bar{X}_{n}-\mu \leqslant 6-\mu\right)
$$

where μ is given in (14), so that

$$
\begin{equation*}
\operatorname{Pr}\left(4 \leqslant \bar{X}_{n} \leqslant 6\right)=\operatorname{Pr}\left(-0.5 \leqslant \bar{X}_{n}-\mu \leqslant 1.5\right) \tag{16}
\end{equation*}
$$

Next, divide the last inequality in (16) by σ / \sqrt{n}, where σ is as given in (15), to get

$$
\begin{equation*}
\operatorname{Pr}\left(4 \leqslant \bar{X}_{n} \leqslant 6\right)=\operatorname{Pr}\left(-1.19 \leqslant \frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}} \leqslant 3.58\right) \tag{17}
\end{equation*}
$$

For n large (say, $n=47$), we can apply the Central Limit Theorem to obtain from (17) that

$$
\begin{equation*}
\operatorname{Pr}\left(4 \leqslant \bar{X}_{n} \leqslant 6\right) \approx \operatorname{Pr}(-1.19 \leqslant Z \leqslant 3.58), \quad \text { where } Z \sim \operatorname{Normal}(0,1) \tag{18}
\end{equation*}
$$

It follows from (18) and the definition of the cdf that

$$
\begin{equation*}
\operatorname{Pr}\left(4 \leqslant \bar{X}_{n} \leqslant 6\right) \approx F_{z}(3.58)-F_{z}(-1.19) \tag{19}
\end{equation*}
$$

where F_{Z} is the cdf of $Z \sim \operatorname{Normal}(0,1)$. Using the symmetry of the pdf of $Z \sim \operatorname{Normal}(0,1)$, we can re-write (19) as

$$
\begin{equation*}
\operatorname{Pr}\left(4 \leqslant \bar{X}_{n} \leqslant 6\right) \approx F_{z}(1.19)+F_{z}(3.58)-1 \tag{20}
\end{equation*}
$$

Finally, using a table of standard normal probabilities, we obtain from (20) that

$$
\operatorname{Pr}\left(4 \leqslant \bar{X}_{n} \leqslant 6\right) \approx 0.8830+0.9998-1=0.8828
$$

Thus, the probability that the average of the 47 digits is between 4 and 6 is about 88.3%.
7. Let $X_{1}, X_{2}, \ldots, X_{30}$ be independent random variables each having a discrete distribution with pmf:

$$
p(x)= \begin{cases}1 / 4, & \text { if } x=0 \text { or } x=2 \\ 1 / 2, & \text { if } x=1 \\ 0, & \text { otherwise }\end{cases}
$$

Estimate the probability that $X_{1}+X_{2}+\cdots+X_{30}$ is at most 33 .
Solution: First, compute the mean, $\mu=E(X)$, and variance, $\sigma^{2}=\operatorname{Var}(X)$, of the distribution:

$$
\begin{gather*}
\mu=0 \cdot \frac{1}{4}+1 \cdot \frac{1}{2}+2 \frac{1}{4}=1 \tag{21}\\
\sigma^{2}=E\left(X^{2}\right)-[E(X)]^{2} \tag{22}
\end{gather*}
$$

where

$$
\begin{equation*}
E\left(X^{2}\right)=0^{2} \cdot \frac{1}{4}+1^{2} \cdot \frac{1}{2}+2^{2} \frac{1}{4}=1.5 \tag{23}
\end{equation*}
$$

so that, combining (21), (22) and (23),

$$
\begin{equation*}
\sigma^{2}=1.5-1=0.5 \tag{24}
\end{equation*}
$$

Next, let $Y=\sum_{k=1}^{n} X_{k}$, where $n=30$. We would like to estimate

$$
\begin{equation*}
\operatorname{Pr}[Y \leqslant 33] \tag{25}
\end{equation*}
$$

By the Central Limit Theorem

$$
\begin{equation*}
\operatorname{Pr}\left(\frac{Y-n \mu}{\sqrt{n} \sigma} \leqslant\right) \approx \operatorname{Pr}(Z \leqslant z), \quad \text { for } z \in \mathbb{R} \tag{26}
\end{equation*}
$$

where $Z \sim \operatorname{Normal}(0,1), \mu=1, \sigma^{2}=1.5$ and $n=30$. It follows from (26) that we can estimate the probability in (25) by

$$
\begin{equation*}
\operatorname{Pr}[Y \leqslant 33] \approx \operatorname{Pr}(Z \leqslant 0.77) \doteq 0.7794 \tag{27}
\end{equation*}
$$

Thus, according to (27), the probability that $X_{1}+X_{2}+\cdots+X_{30}$ is at most 33 is about 78%.
8. Roll a balanced die 36 times. Let Y denote the sum of the outcomes in each of the 36 rolls. Estimate the probability that $108 \leq Y \leq 144$.
Suggestion: Since the event of interest is $(Y \in\{108,109, \ldots, 144\})$, rewrite $\operatorname{Pr}(108 \leq Y \leq 144)$ as

$$
\operatorname{Pr}(107.5<Y \leqslant 144.5)
$$

Solution: Let $X_{1}, X_{2}, \ldots, X_{n}$, where $n=36$, denote the outcomes of the 36 rolls. Since we are assuming that the die is balanced, the random variables $X_{1}, X_{2}, \ldots, X_{n}$ are identically uniformly distributed over the digits $\{1,2, \ldots, 6\}$; in other words, $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from the discrete Uniform(6) distribution. Consequently, the mean of the distribution is

$$
\begin{equation*}
\mu=\frac{6+1}{2}=3.5 \tag{28}
\end{equation*}
$$

and the variance is

$$
\begin{equation*}
\sigma^{2}=\frac{(6+1)(6-1)}{12}=\frac{35}{12} \tag{29}
\end{equation*}
$$

We also have that

$$
Y=\sum_{k=1}^{n} X_{k}
$$

where $n=36$.
By the Central Limit Theorem,

$$
\begin{equation*}
\operatorname{Pr}(107.5<Y \leqslant 144.5) \approx \operatorname{Pr}\left(\frac{107.5-n \mu}{\sqrt{n} \sigma}<Z \leqslant \frac{144.5-n \mu}{\sqrt{n} \sigma}\right) \tag{30}
\end{equation*}
$$

where $Z \sim \operatorname{Normal}(0,1), n=36$, and μ and σ are given in (28) and (29), respectively. We then have from (30) that

$$
\begin{aligned}
\operatorname{Pr}(107.5<Y \leqslant 144.5) & \approx \operatorname{Pr}(-1.81<Z \leqslant 1.81) \\
& \approx F_{z}(1.81)-F_{Z}(-1.81) \\
& \approx 2 F_{z}(1.81)-1 \\
& \approx 2(0.9649)-1 \\
& \approx 0.9298
\end{aligned}
$$

so that the probability that $108 \leqslant Y \leqslant 144$ is about 93%.
9. Let $Y \sim \operatorname{Binomial}(100,1 / 2)$. Use the Central Limit Theorem to estimate the value of $\operatorname{Pr}(Y=50)$.
Solution: We use the so-called continuity correction and estimate

$$
\operatorname{Pr}(49.5<Y \leqslant 50.5)
$$

By the Central Limit Theorem,

$$
\begin{equation*}
\operatorname{Pr}(49.5<Y \leqslant 50.5) \approx \operatorname{Pr}\left(\frac{49.5-n \mu}{\sqrt{n} \sigma}<Z \leqslant \frac{50.5-n \mu}{\sqrt{n} \sigma}\right) \tag{31}
\end{equation*}
$$

where $Z \sim \operatorname{Normal}(0,1), n=100$, and $n \mu=50$ and

$$
\sigma=\sqrt{\frac{1}{2}\left(1-\frac{1}{2}\right)}=\frac{1}{2}
$$

We then obtain from (31) that

$$
\begin{aligned}
\operatorname{Pr}(49.5<Y \leqslant 50.5) & \approx \operatorname{Pr}(-0.1<Z \leqslant 0.1) \\
& \approx F_{z}(0.1)-F_{z}(-0.1) \\
& \approx 2 F_{z}(0.1)-1 \\
& \approx 2(0.5398)-1 \\
& \approx 0.0796
\end{aligned}
$$

Thus,

$$
\operatorname{Pr}(Y=50) \approx 0.08
$$

or about 8%.
10. Let $Y \sim \operatorname{Binomial}(n, 0.55)$. Find the smallest value of n such that, approximately,

$$
\begin{equation*}
\operatorname{Pr}(Y / n>1 / 2) \geqslant 0.95 \tag{32}
\end{equation*}
$$

Solution: By the Central Limit Theorem,

$$
\begin{equation*}
\frac{\frac{Y}{n}-0.55}{\sqrt{(0.55)(1-0.55)} / \sqrt{n}} \xrightarrow{D} Z \sim \operatorname{Normal}(0,1) \text { as } n \rightarrow \infty . \tag{33}
\end{equation*}
$$

Thus, according to (32) and (33), we need to find the smallest value of n such that

$$
\operatorname{Pr}\left(Z>\frac{0.5-0.55}{(0.4975) / \sqrt{n}}\right) \geqslant 0.95
$$

or

$$
\begin{equation*}
\operatorname{Pr}\left(Z>-\frac{\sqrt{n}}{10}\right) \geqslant 0.95 \tag{34}
\end{equation*}
$$

The expression in (34) is equivalent to

$$
1-\operatorname{Pr}\left(Z \leqslant-\frac{\sqrt{n}}{10}\right) \geqslant 0.95
$$

which can be re-written as

$$
\begin{equation*}
1-F_{Z}\left(-\frac{\sqrt{n}}{10}\right) \geqslant 0.95 \tag{35}
\end{equation*}
$$

where F_{Z} is the cdf of $Z \sim \operatorname{Normal}(0,1)$.
By the symmetry of the pdf for $Z \sim \operatorname{Normal}(0,1),(35)$ is equivalent to

$$
\begin{equation*}
F_{z}\left(\frac{\sqrt{n}}{10}\right) \geqslant 0.95 \tag{36}
\end{equation*}
$$

The smallest value of n for which (36) holds true occurs when

$$
\begin{equation*}
\frac{\sqrt{n}}{10} \geqslant z^{*} \tag{37}
\end{equation*}
$$

where z^{*} is a positive real number with the property

$$
\begin{equation*}
F_{z}\left(z^{*}\right)=0.95 \tag{38}
\end{equation*}
$$

The equality in (38) occurs approximately when

$$
\begin{equation*}
z^{*}=1.645 . \tag{39}
\end{equation*}
$$

It follows from (37) and (39) that (32) holds approximately when

$$
\frac{\sqrt{n}}{10} \geqslant 1.645
$$

or $n \geqslant 270.6025$. Thus, $n=271$ is the smallest value of n such that, approximately,

$$
\operatorname{Pr}(Y / n>1 / 2) \geqslant 0.95
$$

11. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a Poisson distribution with mean λ. Thus, $Y=\sum_{i=1}^{n} X_{i}$ has a Poisson distribution with mean $n \lambda$. Moreover, by the Central Limit Theorem, $\bar{X}=Y / n$ has, approximately, a $\operatorname{Normal}(\lambda, \lambda / n)$ distribution for large n. Show that $u(Y / n)=\sqrt{Y / n}$ is a function of Y / n which is essentially free of λ.
Solution: We will show that, for large values of n, the distribution of

$$
\begin{equation*}
2 \sqrt{n}\left(\sqrt{\frac{Y}{n}}-\sqrt{\lambda}\right) \tag{40}
\end{equation*}
$$

is independent of λ. In fact, we will show that, for large values of n, the distribution of the random variables in (40) can be approximated by a $\operatorname{Normal}(0,1)$ distribution.
First, note that by the weak Law of Large Numbers,

$$
\frac{Y}{n} \xrightarrow{\operatorname{Pr}} \lambda, \quad \text { as } n \rightarrow \infty .
$$

Thus, for large values of n, we can approximate $u(Y / n)$ by its linear approximation around λ

$$
\begin{equation*}
u(Y / n) \approx u(\lambda)+u^{\prime}(\lambda)\left(\frac{Y}{n}-\lambda\right) \tag{41}
\end{equation*}
$$

where

$$
\begin{equation*}
u^{\prime}(\lambda)=\frac{1}{2 \sqrt{\lambda}} \tag{42}
\end{equation*}
$$

Combining (41) and (42) we see that, for large values of n,

$$
\begin{equation*}
\sqrt{\frac{Y}{n}}-\sqrt{\lambda} \approx \frac{1}{2 \sqrt{n}} \cdot \frac{\frac{Y}{n}-\lambda}{\sqrt{\frac{\lambda}{n}}} \tag{43}
\end{equation*}
$$

Since, by the Central Limit Theorem,

$$
\begin{equation*}
\frac{\frac{Y}{n}-\lambda}{\sqrt{\frac{\lambda}{n}}} \stackrel{D}{\longrightarrow} Z \sim \operatorname{Normal}(0,1) \text { as } n \rightarrow \infty \tag{44}
\end{equation*}
$$

it follows from (43) and (44) that

$$
2 \sqrt{n}\left(\sqrt{\frac{Y}{n}}-\sqrt{\lambda}\right) \xrightarrow{D} Z \sim \operatorname{Normal}(0,1) \text { as } n \rightarrow \infty,
$$

which was to be shown.
12. Let X denote a random variable with mean μ and variance σ^{2}. Use Chebyshev's inequality to show that

$$
\operatorname{Pr}(|X-\mu| \geqslant k \sigma) \leqslant \frac{1}{k^{2}}
$$

for all $k>0$.
Solution: Apply Chebyshev's inequality,

$$
\operatorname{Pr}(|X-\mu| \geqslant \varepsilon) \leqslant \frac{\operatorname{Var}(X)}{\varepsilon^{2}}
$$

for every $\varepsilon>0$, to the case in which $\varepsilon=k \sigma$, so that

$$
\operatorname{Pr}(|X-\mu| \geqslant k \sigma) \leqslant \frac{\sigma^{2}}{(k \sigma)^{2}}=\frac{1}{k^{2}},
$$

which was to be shown.
13. Suppose that factory produces a number X of items in a week, where X can be modeled by a random variable with mean 50 . Suppose also that the variance for a week's production is known to be 25 . What can be said about the probability that this week's production will be between 40 and 60 ?
Solution: Write

$$
\operatorname{Pr}(40<X<60)=\operatorname{Pr}(-10<X-\mu<10)
$$

where $\mu=50$, so that

$$
\operatorname{Pr}(40<X<60)=\operatorname{Pr}(|X-\mu|<2 \sigma)
$$

where $\sigma=5$. We can then write

$$
\operatorname{Pr}(40<X<60)=1-\operatorname{Pr}(|X-\mu| \geqslant 2 \sigma),
$$

where, in view of the result in Problem 12,

$$
\operatorname{Pr}(|X-\mu| \geqslant 2 \sigma) \leqslant \frac{1}{4}
$$

Consequently,

$$
\operatorname{Pr}(40<X<60) \geqslant 1-\frac{1}{4}=\frac{3}{4}
$$

so that the he probability that this week's production will be between 40 and 60 is at least 75%.
14. Let $\left(X_{n}\right)$ denote a sequence of nonnegative random variables with means $\mu_{n}=$ $E\left(X_{n}\right)$, for each $n=1,2,3, \ldots$. Assume that $\lim _{n \rightarrow \infty} \mu_{n}=0$. Show that X_{n} converges in probability to 0 as $n \rightarrow \infty$.
Solution: We need to show that, for any $\varepsilon>0$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\left|X_{n}\right|<\varepsilon\right)=1 \tag{45}
\end{equation*}
$$

We will establish (45) by first applying the following inequality: Given a random variable X and any $\varepsilon>0$,

$$
\begin{equation*}
\operatorname{Pr}(|X| \geqslant \varepsilon) \leqslant \frac{E(|X|)}{\varepsilon} \tag{46}
\end{equation*}
$$

We prove the inequality in (46) for the case in which X is a continuous random variable with pdf f_{X}. Denote the event $(|X| \geqslant \varepsilon)$ by A_{ε} and compute

$$
E(|X|)=\int_{-\infty}^{\infty}|x| f_{X}(x) d x \geqslant \int_{A_{\varepsilon}}|x| f_{X}(x) d x
$$

so that

$$
E(|X|) \geqslant \varepsilon \int_{A_{\varepsilon}} f_{X}(x) d x=\varepsilon \operatorname{Pr}\left(A_{\varepsilon}\right)
$$

which yields (46).
Next, apply the inequality in (46) to $X=X_{n}$, for each n, and observe that

$$
E\left(\left|X_{n}\right|\right)=E\left(X_{n}\right)=\mu_{n}
$$

since we are assuming that X_{n} is nonnegative. It then follows from (46) that

$$
\begin{equation*}
\operatorname{Pr}\left(\left|X_{n}\right| \geqslant \varepsilon\right) \leqslant \frac{\mu_{n}}{\varepsilon}, \quad \text { for } n=1,2,3, \ldots \tag{47}
\end{equation*}
$$

It follows from (47) that

$$
\operatorname{Pr}\left(\left|X_{n}\right|<\varepsilon\right) \geqslant 1-\frac{\mu_{n}}{\varepsilon}, \quad \text { for } n=1,2,3, \ldots
$$

so that

$$
\begin{equation*}
1-\frac{\mu_{n}}{\varepsilon} \leqslant \operatorname{Pr}\left(\left|X_{n}\right|<\varepsilon\right) \leqslant 1, \quad \text { for } n=1,2,3, \ldots \tag{48}
\end{equation*}
$$

Next, use the assumption that $\lim _{n \rightarrow \infty} \mu_{n}=0$ and the Squeeze Lemma to obtain from (48) that

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\left|X_{n}\right|<\varepsilon\right)=1
$$

which was to be shown. Hence, X_{n} converges in probability to 0 as $n \rightarrow \infty$.

