Assignment #1

Due on Wednesday, September 10, 2014

Read Chapter 1, An Example from Statistical Inference, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 1.4 on *Set Theory* in DeGroot and Schervish.

Do the following problems

- 1. Let \mathcal{C} denote a sample space and A be a subset of \mathcal{C} . Establish the following set theoretic identities:
 - (a) $A \cap \emptyset = \emptyset$,
 - (b) $A \cup \emptyset = A;$

where \emptyset denotes the empty set. Justify your steps.

- 2. Let C denote a sample space and A and B denote subsets of C. Establish the following set theoretic identities:
 - (a) $(A^c)^c = A$, (b) $(A \cup B)^c = A^c \cap B^c$;

where A^c denote the complement of A.

3. Let C denote a sample space and A, B and C denote subsets of C. Prove the following distributive properties:

(a)
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

- (b) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- 4. Let A and B be subsets of the sample space C. The set difference $A \setminus B$ is defined to be

$$A \backslash B = \{ x \in A \mid x \notin B \};$$

thus, $A \setminus B$ is a subset of A that contains those elements in A which are not in B.

Prove that

(a)
$$A \setminus B = A \cap B^c$$
,

- (b) $B \setminus (A \cap B) = A^c \cap B$
- 5. Suppose that $A \subseteq B$. Prove that $B^c \subseteq A^c$.