Assignment \#15

Due on Wednesday, October 29, 2014
Read Section 5.2 on Marginal Distributions in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 5.3 on the Independent Random Variables in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 3.9 on Functions of Two or More Random Variables in DeGroot and Schervish.
Read Section 4.10 on Covariance and Correlation in DeGroot and Schervish.

Background and Definitions

- Definition of Covariance. Given random variables X and Y, put $\mu_{X}=E(X)$ and $\mu_{Y}=E(Y)$. The covariance of X and Y, denoted $\operatorname{Cov}(X, Y)$ is defined by

$$
\begin{equation*}
\operatorname{Cov}(X, Y)=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right] \tag{1}
\end{equation*}
$$

provided that the expectation in (1) exists.

- Definition of Correlation. Let X and Y be random variables with finite variances σ_{X}^{2} and σ_{Y}^{2}, respectively. The correlation of X and Y, denoted $\rho(X, Y)$, is defined by

$$
\rho(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}
$$

Do the following problems

1. Suppose X and Y are independent and let $g_{1}(X)$ and $g_{2}(Y)$ be functions for which $E\left(g_{1}(X) g_{2}(Y)\right)$ exists. Show that

$$
E\left(g_{1}(X) g_{2}(Y)\right)=E\left(g_{1}(X)\right) \cdot E\left(g_{2}(Y)\right)
$$

Conclude therefore that if X and Y are independent and $E(|X Y|)$ is finite, then

$$
E(X Y)=E(X) \cdot E(Y)
$$

2. Suppose X and Y are independent random variables for which the moment generating functions exist on some common interval of values of t. Show that

$$
\psi_{X+Y}(t)=\psi_{X}(t) \cdot \psi_{Y}(t)
$$

for t is the given interval.
3. Let X and Y denote random variables for which $\operatorname{Var}(X)$ and $\operatorname{Var}(Y)$ exist; that is, $\operatorname{Var}(X)<\infty$ and $\operatorname{Var}(Y)<\infty$. Show that $\operatorname{Cov}(X, Y)$ exists.
Suggestion: Use the inequality

$$
|a b| \leqslant \frac{1}{2}\left(a^{2}+b^{2}\right)
$$

for all real numbers a and b.
4. Assume that X and Y have joint pdf

$$
f_{(X, Y)}(x, y)= \begin{cases}2 x y+\frac{1}{2}, & \text { for } 0 \leqslant x \leqslant 1 \text { and } 0 \leqslant y \leqslant 1 \\ 0, & \text { elsewhere }\end{cases}
$$

Compute the covariance of X and Y.
5. Let X and Y denote random variables with finite variance.
(a) Derive the identity

$$
\operatorname{Cov}(X, Y)=E(X Y)-E(X) \cdot E(Y)
$$

(b) Show that if X and Y are independent, then

$$
\operatorname{Cov}(X, Y)=0 \quad \text { and } \quad \rho(X, Y)=0
$$

