Assignment #15

Due on Wednesday, October 29, 2014

Read Section 5.2 on *Marginal Distributions* in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 5.3 on the *Independent Random Variables* in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 3.9 on Functions of Two or More Random Variables in DeGroot and Schervish.

Read Section 4.10 on Covariance and Correlation in DeGroot and Schervish.

Background and Definitions

• Definition of Covariance. Given random variables X and Y, put $\mu_X = E(X)$ and $\mu_Y = E(Y)$. The *covariance* of X and Y, denoted Cov(X,Y) is defined by

$$Cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)], \tag{1}$$

provided that the expectation in (1) exists.

• **Definition of Correlation**. Let X and Y be random variables with finite variances σ_X^2 and σ_Y^2 , respectively. The *correlation* of X and Y, denoted $\rho(X,Y)$, is defined by

$$\rho(X,Y) = \frac{\mathrm{Cov}(X,Y)}{\sigma_{\scriptscriptstyle X}\sigma_{\scriptscriptstyle Y}}.$$

Do the following problems

1. Suppose X and Y are independent and let $g_1(X)$ and $g_2(Y)$ be functions for which $E(g_1(X)g_2(Y))$ exists. Show that

$$E(g_1(X)g_2(Y)) = E(g_1(X)) \cdot E(g_2(Y))$$

Conclude therefore that if X and Y are independent and E(|XY|) is finite, then

$$E(XY) = E(X) \cdot E(Y).$$

2. Suppose X and Y are independent random variables for which the moment generating functions exist on some common interval of values of t. Show that

$$\psi_{\scriptscriptstyle X+Y}(t) = \psi_{\scriptscriptstyle X}(t) \cdot \psi_{\scriptscriptstyle Y}(t)$$

for t is the given interval.

3. Let X and Y denote random variables for which $\operatorname{Var}(X)$ and $\operatorname{Var}(Y)$ exist; that is, $\operatorname{Var}(X) < \infty$ and $\operatorname{Var}(Y) < \infty$. Show that $\operatorname{Cov}(X,Y)$ exists.

Suggestion: Use the inequality

$$|ab| \leqslant \frac{1}{2}(a^2 + b^2),$$

for all real numbers a and b.

4. Assume that X and Y have joint pdf

$$f_{\scriptscriptstyle (X,Y)}(x,y) = \begin{cases} 2xy + \frac{1}{2}, & \text{ for } 0 \leqslant x \leqslant 1 \text{ and } 0 \leqslant y \leqslant 1; \\ 0, & \text{ elsewhere.} \end{cases}$$

Compute the covariance of X and Y.

- 5. Let X and Y denote random variables with finite variance.
 - (a) Derive the identity

$$Cov(X, Y) = E(XY) - E(X) \cdot E(Y).$$

(b) Show that if X and Y are independent, then

$$Cov(X, Y) = 0$$
 and $\rho(X, Y) = 0$.