Assignment #16

Due on Friday, October 31, 2014

Read Section 5.3 on the *Independent Random Variables* in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 5.6 on The Normal Distributions in DeGroot and Schervish.

Do the following problems

- 1. Suppose that $X \sim \text{Normal}(\mu, \sigma^2)$ and define $Z = \frac{X \mu}{\sigma}$. Prove that $Z \sim \text{Normal}(0, 1)$
- 2. (The Chi–Square Distribution) Let $X \sim {\rm Normal}(0,1)$ and define $Y = X^2.$ Compute the pdf, $f_{\rm Y},$ of Y.

The distribution of Y is called the Chi–Square distribution with one degree of freedom; we write $Y \sim \chi^2(1)$.

3. (Moment Generating Function of the Chi–Square Distribution) Assume that $Y \sim \chi^2(1)$. Compute the mgf, ψ_Y , of Y by computing $E(e^{tY}) = E(e^{tX^2})$, where $X \sim \text{Normal}(0, 1)$.

Use the mgf of Y to compute E(Y) and Var(Y).

- 4. Let Y_1 and Y_2 denote two independent random variables such that $Y_1 \sim \chi^2(1)$ and $Y_2 \sim \chi^2(1)$. Define $X = Y_1 + Y_2$. Use the mgf of the $\chi^2(1)$ distribution found in Problem 3 to compute the mgf of X. Give the distribution of X.
- 5. Let X_1 and X_2 denote independent, Normal $(0, \sigma^2)$ random variables, where $\sigma > 0$. Define the random variables

$$\overline{X} = \frac{X_1 + X_2}{2}$$
 and $Y = \frac{(X_1 - X_2)^2}{2\sigma^2}$.

Determine the distributions of \overline{X} and Y.

Suggestion: To obtain the distribution for Y, first show that

$$\frac{X_1 - X_2}{\sqrt{2} \ \sigma} \sim \text{Normal}(0, 1).$$