Exam 1 (Part I)

Friday, October 3, 2014
Name: \qquad
This is the in-class portion of Exam 1. This is a closed-book and closed-notes exam.
Show all significant work and give reasons for all your answers. Use your own paper and/or the paper provided by the instructor. You have up to 40 minutes to work on the following 2 questions. Relax.

1. Let $(\mathcal{C}, \mathcal{B}, \operatorname{Pr})$ denote a probability space, and let A and B denote events in \mathcal{B}.
(a) State what it means for A and B to be independent.
(b) State what it means for A and B to be mutually exclusive.
(c) Assume that $\operatorname{Pr}(B)>0$. Define the conditional probability of A given B.
(d) Given that $\operatorname{Pr}(B)>0$, state the multiplication rule for computing the probability of the joint occurrence of A and B.
(e) State the inclusion-exclusion principle for computing $\operatorname{Pr}(A \cup B)$.
2. An experiment consists of flipping a fair coin three consecutive times.
(a) List all the elements of the sample space, \mathcal{C}, for this experiment.
(b) For each element, c, of the sample space, \mathcal{C}, let $N_{H}(c)$ denote the number of heads in c, and $N_{T}(c)$ the number of tails in c. Put

$$
X(c)=N_{H}(c)-N_{T}(c), \quad \text { for all } c \in \mathcal{C} .
$$

List all possible values for the random variable X.
(c) Compute the probability mass function (pmf) for X. Explain the reasoning behind your calculations.
(d) Compute $\operatorname{Pr}(X \leqslant 0)$. Explain the reasoning behind your calculations.

