Solutions to Exam 1 (Part I)

1. Let $(\mathcal{C}, \mathcal{B}, \operatorname{Pr})$ denote a probability space, and let A and B denote events in \mathcal{B}.
(a) State what it means for A and B to be independent.

Answer: The events A and B are independent means that

$$
\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A) \cdot \operatorname{Pr}(B)
$$

(b) State what it means for A and B to be mutually exclusive.

Answer: The events A and B are mutually exclusive means that

$$
A \cap B=\emptyset .
$$

(c) Assume that $\operatorname{Pr}(B)>0$. Define the conditional probability of A given B. Answer: The conditional probability of A given $B, \operatorname{Pr}(A \mid B)$, is given by

$$
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}
$$

(d) Given that $\operatorname{Pr}(B)>0$, state the multiplication rule for computing the probability of the joint occurrence of A and B.

Answer:

$$
\operatorname{Pr}(A \cap B)=\operatorname{Pr}(B) \cdot \operatorname{Pr}(A \mid B)
$$

(e) State the inclusion-exclusion principle for computing $\operatorname{Pr}(A \cup B)$.

Answer:

$$
\operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B)
$$

2. An experiment consists of flipping a fair coin three consecutive times.
(a) List all the elements of the sample space, \mathcal{C}, for this experiment.

Solution:

$$
\mathcal{C}:\left\{\begin{array}{c}
H H H \\
H H T \\
H T H \\
H T T \\
T H H \\
T H T \\
T T H \\
T T T
\end{array}\right.
$$

(b) For each element, c, of the sample space, \mathcal{C}, let $N_{H}(c)$ denote the number of heads in c, and $N_{T}(c)$ the number of tails in c. Put

$$
X(c)=N_{H}(c)-N_{T}(c), \quad \text { for all } c \in \mathcal{C}
$$

List all possible values for the random variable X.
Solution: Table 1 shows the values of X for each element of \mathcal{C}. Thus, the

\mathcal{C}	X
$H H H$	3
$H H T$	1
$H T H$	1
$H T T$	-1
THH	1
THT	-1
$T T H$	-1
$T T T$	-3

Table 1: Values of X
possible values of X are: $-3,-1,1$ and 3 .
(c) Compute the probability mass function (pmf) for X. Explain the reasoning behind your calculations.
Solution: Since, we are assuming that the coin is fair, each of the outcomes in the first column in Table 1 has the same likelihood; namely, $\operatorname{Pr}(\{c\})=1 / 8$ for each $c \in \mathcal{C}$.

In order to compute the pmf of X , first note that, in view of Table 1,

$$
\begin{aligned}
(X=-3) & =\{T T T\} \\
(X=-1) & =\{H T T, T H T, T T H\} \\
(X=1) & =\{H H T, H T H, T H H\} \\
(X=3) & =\{H H H\}
\end{aligned}
$$

from which we get that

$$
\begin{aligned}
\operatorname{Pr}(X=-3) & =1 / 8 \\
\operatorname{Pr}(X=-1) & =3 / 8 \\
\operatorname{Pr}(X=1) & =3 / 8 \\
\operatorname{Pr}(X=3) & =1 / 8
\end{aligned}
$$

Thus, the pmf of X is given by

$$
p_{X}(k)= \begin{cases}1 / 8, & \text { if } k=-3 \tag{1}\\ 3 / 8, & \text { if } k=-1 \\ 3 / 8, & \text { if } k=1 \\ 1 / 8, & \text { if } k=3 \\ 0, & \text { elsewhere }\end{cases}
$$

(d) Compute $\operatorname{Pr}(X \leqslant 0)$. Explain the reasoning behind your calculations.

Solution: Using the pmf in (1) we get that

$$
\operatorname{Pr}(X \leqslant 0)=p_{X}(-3)+p_{X}(-1)=\frac{1}{8}+\frac{3}{8}=\frac{1}{2} .
$$

