Solutions to Exam 1 (Part II)

1. A point (x, y) is to be selected at random from a square S containing all the points (x, y) such that $0 \leqslant x \leqslant 1$ and $0 \leqslant y \leqslant 1$. Suppose that the probability that the selected point will belong to each specified subset of S is equal to the area of that subset, whenever that area of the subset is defined.
Define the following events:

$$
\begin{aligned}
& E_{1}=\{(x, y) \in S \mid x \leqslant 0.5\} \\
& E_{2}=\{(x, y) \in S \mid y \geqslant 0.5\} \\
& \text { and } \\
& E_{3}=\{(x, y) \in S \mid x \leqslant 0.5, y \geqslant 0.5\} \cup\{(x, y) \in S \mid x \geqslant 0.5, y \leqslant 0.5\}
\end{aligned}
$$

(a) Compute $\operatorname{Pr}\left(E_{1}\right), \operatorname{Pr}\left(E_{2}\right)$ and $\operatorname{Pr}\left(E_{3}\right)$.

Solution: The events E_{1}, E_{2} and E_{3} are shown as the shaded regions in Figure 1. In this case, probabilities are given by the areas of the shaded

Figure 1: Sketch of Events E_{1}, E_{2} and E_{3}
regions; thus,

$$
\begin{aligned}
& \operatorname{Pr}\left(E_{1}\right)=\operatorname{area}\left(E_{1}\right)=(0.5) \cdot(1)=0.5, \\
& \operatorname{Pr}\left(E_{2}\right)=\operatorname{area}\left(E_{2}\right)=(1) \cdot(0.5)=0.5,
\end{aligned}
$$

and

$$
\operatorname{Pr}\left(E_{3}\right)=\operatorname{area}\left(E_{3}\right)=(0.5) \cdot(0.5)+(0.5) \cdot(0.5)=0.5
$$

(b) Compute $\operatorname{Pr}\left(E_{1} \cap E_{2}\right), \operatorname{Pr}\left(E_{1} \cap E_{3}\right)$ and $\operatorname{Pr}\left(E_{2} \cap E_{3}\right)$.

Solution: The events $\operatorname{Pr}\left(E_{1} \cap E_{2}\right), \operatorname{Pr}\left(E_{1} \cap E_{3}\right)$ and $\operatorname{Pr}\left(E_{2} \cap E_{3}\right)$ are shown in Figure 2. Computing the areas of the events in (2), we obtain

Figure 2: Sketch of Events $E_{1} \cap E_{2}, E_{1} \cap E_{3}$ and $E_{2} \cap E_{3}$

$$
\begin{equation*}
\operatorname{Pr}\left(E_{1} \cap E_{2}\right)=P\left(E_{1} \cap E_{3}\right)=\operatorname{Pr}\left(E_{2} \cap E_{3}\right)=(0.5) \cdot(0.5)=0.25 \tag{1}
\end{equation*}
$$

(c) Compute $\operatorname{Pr}\left(E_{1} \cap E_{2} \cap E_{3}\right)$.

Solution: A sketch of the event $E_{1} \cap E_{2} \cap E_{3}$ is shown in Figure 3. Compute

Figure 3: Sketch of Event $E_{1} \cap E_{2} \cap E_{3}$

$$
\begin{equation*}
\operatorname{Pr}\left(E_{1} \cap E_{2} \cap E_{3}\right)=\operatorname{area}\left(E_{1} \cap E_{2} \cap E_{3}\right)=(0.5) \cdot(0.5)=0.25 . \tag{2}
\end{equation*}
$$

(d) Compute $\operatorname{Pr}\left(E_{1} \mid E_{2} \cap E_{3}\right)$.

Solution: Compute

$$
\operatorname{Pr}\left(E_{1} \mid E_{2} \cap E_{3}\right)=\frac{\operatorname{Pr}\left(E_{1} \cap E_{2} \cap E_{3}\right)}{\operatorname{Pr}\left(E_{2} \cap E_{3}\right)}=\frac{0.25}{0.25}=1,
$$

where we have used the results of parts (b) and (c).
(e) Are the events E_{1}, E_{2} and E_{3} pairwise independent? Give reasons for your answer.
Solution: Use the result of part (a) to compute

$$
\begin{aligned}
& \operatorname{Pr}\left(E_{1}\right) \cdot \operatorname{Pr}\left(E_{2}\right)=(0.5) \cdot(0.5)=0.25, \\
& \operatorname{Pr}\left(E_{1}\right) \cdot \operatorname{Pr}\left(E_{3}\right)=(0.5) \cdot(0.5)=0.25,
\end{aligned}
$$

and

$$
\operatorname{Pr}\left(E_{2}\right) \cdot \operatorname{Pr}\left(E_{3}\right)=(0.5) \cdot(0.5)=0.25
$$

Comparing these with the result in (1) we see that

$$
\operatorname{Pr}\left(E_{i} \cap E_{j}\right)=\operatorname{Pr}\left(E_{i}\right) \cdot \operatorname{Pr}\left(E_{j}\right), \quad \text { for } i \neq j
$$

Hence, E_{1}, E_{2} and E_{3} are pairwise independent.
(f) Are the events E_{1}, E_{2} and E_{3} mutually independent? Give reasons for your answer.
Solution: Use the result of part (a) to compute

$$
\operatorname{Pr}\left(E_{1}\right) \cdot \operatorname{Pr}\left(E_{2}\right) \cdot \operatorname{Pr}\left(E_{3}\right)=(0.5) \cdot(0.5) \cdot(0.5)=0.125
$$

Comparing this with the result in (2) we see that

$$
\operatorname{Pr}\left(E_{1} \cap E_{2} \cap E_{3}\right) \neq \operatorname{Pr}\left(E_{1}\right) \cdot \operatorname{Pr}\left(E_{2}\right) \cdot \operatorname{Pr}\left(E_{3}\right)
$$

hence, the events E_{1}, E_{2} and E_{3} are not mutually independent.
Alternatively, in view of the results in parts (a) and (d), we see that

$$
\operatorname{Pr}\left(E_{1} \mid E_{2} \cap E_{3}\right) \neq \operatorname{Pr}\left(E_{1}\right) .
$$

2. Suppose the probability density function (pdf) of a random variable, X, is as follows:

$$
f_{X}(x)= \begin{cases}c e^{-x / \beta}, & \text { for } x \geqslant 0 \\ 0, & \text { elsewhere }\end{cases}
$$

where β is a given positive parameter.
(a) Find the value of c and sketch a graph of the pdf.

Solution: We find c so that

$$
\begin{equation*}
\int_{-\infty}^{\infty} f_{X}(x) d x=1 \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
\int_{-\infty}^{\infty} f_{X}(x) d x & =\int_{0}^{\infty} c e^{-x / \beta} d x \\
& =\lim _{b \rightarrow \infty} \int_{0}^{b} c e^{-x / \beta} d x
\end{aligned}
$$

or

$$
\begin{equation*}
\int_{-\infty}^{\infty} f_{X}(x) d x=c \lim _{b \rightarrow \infty} \int_{0}^{b} e^{-x / \beta} d x \tag{4}
\end{equation*}
$$

In order to evaluate the limit on the right-hand side of (10), we first evaluate the integral

$$
\int_{0}^{b} e^{-x / \beta} d x=\left[-\beta e^{-x / \beta}\right]_{0}^{b}=\beta-\beta e^{-b / \beta}
$$

so that, since $\beta>0$,

$$
\begin{equation*}
\lim _{b \rightarrow \infty} \int_{0}^{b} e^{-x / \beta} d x=\beta \tag{5}
\end{equation*}
$$

Combining (10) and (5) we get

$$
\begin{equation*}
\int_{-\infty}^{\infty} f_{X}(x) d x=c \beta \tag{6}
\end{equation*}
$$

It then follows from (9) and (6) that

$$
c=\frac{1}{\beta} .
$$

A sketch of the graph of f_{X} for the case $\beta=1$ is shown in Figure 4.
(b) Compute $\operatorname{Pr}(X>\beta)$.

Solution: Compute

$$
\begin{aligned}
\operatorname{Pr}(X>\beta) & =1-\operatorname{Pr}(X \leqslant \beta) \\
& =1-\int_{0}^{\beta} \frac{1}{\beta} e^{-x / \beta} d x \\
& =1-\left[-e^{-x / \beta}\right]_{0}^{\beta} \\
& =1-\left[1-e^{-1}\right]
\end{aligned}
$$

Figure 4: Sketch of graph of $y=f_{X}(x)$
so that

$$
\operatorname{Pr}(X>\beta)=\frac{1}{e}
$$

(c) Find a positive value, m, for which

$$
\begin{equation*}
\operatorname{Pr}(X \leqslant m)=\frac{1}{2} \tag{7}
\end{equation*}
$$

Solution: First, compute

$$
\begin{aligned}
\operatorname{Pr}(X \leqslant m) & =\int_{0}^{m} \frac{1}{\beta} e^{-x / \beta} d x \\
& =\left[-e^{-x / \beta}\right]_{0}^{m} \\
& =1-e^{-m / \beta}
\end{aligned}
$$

It then follows from (7) that

$$
1-e^{-m / \beta}=\frac{1}{2}
$$

or

$$
\begin{equation*}
e^{-m / \beta}=\frac{1}{2} . \tag{8}
\end{equation*}
$$

Solving (8) for m then yields

$$
m=(\ln 2) \beta
$$

3. Suppose that the time, T, that a manufacturing system is out of operation has cumulative distribution function (cdf) given by

$$
F_{T}(t)= \begin{cases}1-\left(\frac{2}{t}\right)^{2}, & \text { for } t>2 \tag{9}\\ 0, & \text { elsewhere }\end{cases}
$$

(a) Assume that t is measured in days. Estimate the probability that the system will be out of operation for at least 4 days.
Solution: Compute

$$
\begin{aligned}
\operatorname{Pr}(T>4) & =1-\operatorname{Pr}(T \leqslant 4) \\
& =1-F_{T}(4) .
\end{aligned}
$$

Thus, using (9),

$$
\operatorname{Pr}(T>4)=1-\left[1-\left(\frac{2}{4}\right)^{2}\right]=\frac{1}{4}
$$

or 25%.
(b) Assume that the resulting cost to the company is proportional to $Y=T^{2}$. Determine the probability density function (pdf) for Y.
Solution: First, compute the cdf of Y :

$$
\begin{aligned}
F_{Y}(y) & =\operatorname{Pr}(Y \leqslant y), \quad \text { for } y>4 \\
& =\operatorname{Pr}\left(T^{2} \leqslant y\right) \\
& =\operatorname{Pr}(T \leqslant \sqrt{y})
\end{aligned}
$$

so that

$$
F_{Y}(y)=F_{T}(\sqrt{y}), \quad \text { for } y>4
$$

Thus, using (9) we get that

$$
F_{Y}(y)= \begin{cases}1-\frac{4}{y}, & \text { for } y>4 \tag{10}\\ 0, & \text { for } y \leqslant 4\end{cases}
$$

Differentiating (10) with respect to y yields

$$
f_{Y}(y)= \begin{cases}\frac{4}{y^{2}}, & \text { for } y>4 \\ 0, & \text { for } y \leqslant 4\end{cases}
$$

