Solutions to Exam 2 (Part I)

1. Let X denote a discrete random variable with possible values $x_{1}, x_{2}, \ldots, x_{n}$.
(a) Let g denote a real valued function of a single variable. Give a formula for computing the expectation $E[g(X)]$.

Answer: $E[g(X)]=\sum_{k=1}^{n} g\left(x_{k}\right) p_{X}\left(x_{k}\right)$, where p_{X} is the pmf of X.
(b) An insurance policy pays $\$ 100$ per day for up to 3 days of hospitalization and $\$ 50$ per day for each day of hospitalization thereafter. The number of days of hospitalization, X, is a discrete random variable with probability mass function

$$
p_{X}(k)= \begin{cases}\frac{6-k}{15}, & \text { for } k=1,2,3,4,5 \\ 0, & \text { elsewhere }\end{cases}
$$

Determine the expected payment for hospitalization under this policy.
Solution: The payments for hospitalization are described by the function

$$
g(x)= \begin{cases}100, & \text { if } x=1 \\ 200, & \text { if } x=2 \\ 300, & \text { if } x=3 \\ 350, & \text { if } x=4 \\ 400, & \text { if } x=5\end{cases}
$$

where x denotes the number of days of hospitalization. We then have that the expected payment for hospitalization is

$$
\begin{aligned}
E[g(X)] & =\sum_{k=1}^{5} g(k) p_{X}(k) \\
& =100 \cdot \frac{5}{15}+200 \cdot \frac{4}{15}+300 \cdot \frac{3}{15}+350 \cdot \frac{2}{15}+400 \cdot \frac{1}{15}
\end{aligned}
$$

so that

$$
E[g(X)]=220
$$

Thus, the expected payment per hospitalization is $\$ 220$.
2. Let X and Y denote independent random variables such that $X \sim \operatorname{Normal}(\mu, 1)$ and $Y \sim \operatorname{Normal}(\mu, 1)$, for some real parameter μ. Define $W=X-Y$.
(a) Compute the moment generating function of W and use it to determine the distribution of W.
Solution: Compute

$$
\begin{aligned}
\psi_{W}(t) & =\psi_{X-Y}(t) \\
& =E\left(e^{t(X-Y)}\right) \\
& =E\left(e^{t X+(-t) Y)}\right) \\
& =E\left(e^{t X} \cdot e^{-t Y}\right)
\end{aligned}
$$

thus, since X and Y are independent,

$$
\begin{aligned}
\psi_{W}(t) & =E\left(e^{t X}\right) \cdot E\left(e^{-t Y}\right) \\
& =\psi_{X}(t) \cdot \psi_{Y}(-t)
\end{aligned}
$$

Consequently, since $X \sim \operatorname{Normal}(\mu, 1)$ and $Y \sim \operatorname{Normal}(\mu, 1)$,

$$
\begin{aligned}
\psi_{W}(t) & =e^{\mu t+\frac{1}{2} t^{2}} \cdot e^{\mu(-t)+\frac{1}{2}(-t)^{2}} \\
& =e^{\mu t+\frac{1}{2} t^{2}} \cdot e^{-\mu t+\frac{1}{2} t^{2}} \\
& =e^{t^{2}}
\end{aligned}
$$

which is the mgf of a $\operatorname{Normal}(0,2)$ distribution. It then follows by the Uniqueness Theorem for Moment Generating Functions that

$$
\begin{equation*}
W \sim \operatorname{Normal}(0,2) \tag{1}
\end{equation*}
$$

(b) Estimate the probability $\operatorname{Pr}(|X-Y|<\sqrt{2})$. Explain the reasoning leading to your answer.
Solution: It follows from (1) that $\frac{X-Y}{\sqrt{2}} \sim \operatorname{Normal}(0,1)$. Set $Z \frac{X-Y}{\sqrt{2}}$;
then, $Z \sim \operatorname{Normal}(0,1)$ and

$$
\begin{aligned}
\operatorname{Pr}(|X-Y|<\sqrt{2}) & =\operatorname{Pr}\left(\left|\frac{X-Y}{\sqrt{2}}\right|<1\right) \\
& =\operatorname{Pr}(|Z|<1) \\
& =\operatorname{Pr}(-1<Z<1) \\
& =\operatorname{Pr}(-1<Z \leqslant 1)
\end{aligned}
$$

since Z is a continuous random variable. It then follows that

$$
\begin{aligned}
\operatorname{Pr}(|X-Y|<\sqrt{2}) & =F_{Z}(1)-F_{Z}(-1) \\
& =F_{Z}(1)-\left(1-F_{Z}(1)\right),
\end{aligned}
$$

by the symmetry of the pdf of $Z \sim \operatorname{Normal}(0,1)$. We then have that

$$
\operatorname{Pr}(|X-Y|<\sqrt{2})=2 F_{Z}(1)-1
$$

where $F_{z}(1) \approx 0.8413$. We then have that

$$
\operatorname{Pr}(|X-Y|<\sqrt{2}) \approx 0.6826
$$

