Solutions to Exam 2 (Part II)

1. The random pair (X, Y) has the joint distribution shown in Table 1.

$X \backslash Y$	2	3	4
1	0.1	0	0.1
2	0.3	0.1	0.2
3	0	0.2	0

Table 1: Joint Probability Distribution for X and $Y, p_{(X, Y)}$
(a) Compute $\operatorname{Pr}(X<Y)$.

Solution:

$$
\begin{aligned}
\operatorname{Pr}(X<Y)= & p_{(X, Y)}(1,2)+p_{(X, Y)}(1,3)+p_{(X, Y)}(1,4) \\
& p_{(X, Y)}(2,3)+p_{(X, Y)}(2,4)+p_{(X, Y)}(3,4) \\
= & 0.1+0+0.1+0.1+0.2+0 \\
= & 0.5 .
\end{aligned}
$$

(b) Compute the marginal distributions of X and Y.

Solution: The marginal distribution of X is

$$
p_{X}(k)= \begin{cases}0.2, & \text { if } k=1 \\ 0.6, & \text { if } k=2 \\ 0.2, & \text { if } k=3 \\ 0, & \text { elsewhere }\end{cases}
$$

and the marginal distribution of Y is

$$
p_{Y}(k)= \begin{cases}0.4, & \text { if } k=2 \\ 0.3, & \text { if } k=3 \\ 0.3, & \text { if } k=4 \\ 0, & \text { elsewhere }\end{cases}
$$

(c) Show that X and Y are not independent. Give a reason for your answer.

Solution: Note that $p_{(X, Y)}(1,3)=0$, while $p_{X}(1) \cdot p_{Y}(3)=(0.2) \cdot(0.3)$; so that, $p_{X}(1) \cdot p_{Y}(3)=0.06$. Hence,

$$
p_{(X, Y)}(1,3) \neq p_{X}(1) \cdot p_{Y}(3),
$$

and, therefore, X and Y are not independent.
(d) Compute the expectations $E(X), E(Y)$ and $E(X Y)$.

Solution: Compute

$$
\begin{aligned}
& E(X)=1 \cdot(0.2)+2 \cdot(0.6)+3 \cdot(0.2)=2.0 \\
& E(Y)=2 \cdot(0.4)+3 \cdot(0.3)+4 \cdot(0.3)=2.9
\end{aligned}
$$

and

$$
\begin{aligned}
E(X Y)= & 1 \cdot 2(0.1)+1 \cdot 3(0)+1 \cdot 4(0.1) \\
& +2 \cdot 2(0.3)+2 \cdot 3(0.1)+2 \cdot 4(0.2) \\
& +3 \cdot 2(0)+3 \cdot 3(0.2)+3 \cdot 4(0) \\
= & 2(0.1)+0+4(0.1) \\
& \quad+4(0.3)+6(0.1)+8(0.2) \\
& \quad+0+9(0.2)+0 \\
= & 0.2+0.4+1.2+0.6+1.8+1.6 \\
= & 5.8 .
\end{aligned}
$$

(e) Compute the covariance of X and Y.

Solution: Compute

$$
\operatorname{Cov}(X, Y)=E(X Y)-E(X) \cdot E(Y)=5.8-(2.0)(2.9)=0
$$

2. A random point (X, Y) is distributed uniformly on the triangle with vertices $(0,0),(4,0)$ and $(0,1)$ in the $x y$-plane.
(a) Give a formula for computing the joint pdf, $f_{(X, Y)}$, of the random vector (X, Y).

Figure 1: Triangular Region for Problem 2

Solution: Figure 1 shows a sketch of the triangular region with vertices $(0,0),(4,0)$ and $(0,1)$ in the $x y$-plane. Since the area of the triangle is

$$
A=\frac{1}{2}(4)(1)=2,
$$

it follows that the joint pdf of (X, Y) is

$$
f_{(X, Y)}(x, y)= \begin{cases}\frac{1}{2}, & \text { if } 0<x<4 \text { and } 0<y<1-x / 4 \\ 0, & \text { elsewhere }\end{cases}
$$

(b) Compute the marginal distributions f_{X} and f_{Y}.

Solution: Compute, for $0<x<4$,

$$
\begin{aligned}
f_{X}(x) & =\int_{-\infty}^{\infty} f_{(X, Y)}(x, y) d y \\
& =\int_{0}^{1-x / 4} \frac{1}{2} d y \\
& =\frac{1}{2}\left(1-\frac{x}{4}\right)
\end{aligned}
$$

Hence,

$$
f_{X}(x)= \begin{cases}\frac{1}{8}(4-x), & \text { if } 0<x<4 \\ 0, & \text { elsewhere }\end{cases}
$$

Similarly, for $0<y<1$, compute

$$
\begin{aligned}
f_{Y}(y) & =\int_{-\infty}^{\infty} f_{(X, Y)}(x, y) d x \\
& =\int_{0}^{4-4 y} \frac{1}{2} d y \\
& =\frac{1}{2}(4-4 y)
\end{aligned}
$$

so that

$$
f_{Y}(y)= \begin{cases}2(1-y), & \text { if } 0<y<1 \\ 0, & \text { elsewhere }\end{cases}
$$

(c) Are X and Y independent random variables? Give a reason for your answer.
Solution: Observe that

$$
f_{X}(x) \cdot f_{Y}(y)= \begin{cases}\frac{1}{4}(4-x)(1-y), & \text { if } 0<x<4 \text { and } 0<y<1 \\ 0, & \text { elsewhere }\end{cases}
$$

Thus, $f_{(X, Y)}(x, y) \neq f_{X}(x) \cdot f_{Y}(y)$ for all $(x, y) \in \mathbb{R}^{2}$. Hence, X and Y are not independent.
(d) Compute the expectations $E(X), E(Y)$ and $E(X Y)$

Solution: Compute

$$
\begin{aligned}
E(X) & =\int_{-\infty}^{\infty} x f_{X}(x) d x \\
& =\int_{0}^{4} \frac{x}{8}(4-x) d x \\
& =\frac{1}{8} \int_{0}^{4}\left(4 x-x^{2}\right) d x \\
& =\frac{1}{8}\left[2 x^{2}-\frac{x^{3}}{3}\right]_{0}^{4}
\end{aligned}
$$

so that

$$
E(X)=\frac{4}{3}
$$

Similarly,

$$
\begin{aligned}
E(Y) & =\int_{-\infty}^{\infty} x f_{Y}(y) d y \\
& =\int_{0}^{1} 2 y(1-y) d y \\
& =\int_{0}^{1}\left(2 y-2 y^{2}\right) d y \\
& =\left[y^{2}-\frac{2}{3} y^{3}\right]_{0}^{1}
\end{aligned}
$$

so that

$$
E(Y)=\frac{1}{3} .
$$

Next, compute

$$
\begin{aligned}
E(X Y) & =\iint_{\mathbb{R}^{2}} x y f_{(X, Y)}(x, y) d x d y \\
& =\frac{1}{2} \int_{0}^{1} \int_{0}^{4(1-y)} x y d x d y \\
& =\frac{1}{4} \int_{0}^{1}\left[x^{2} y\right]_{0}^{4(1-y)} d y \\
& =4 \int_{0}^{1}(1-y)^{2} y d y \\
& =4 \int_{0}^{1}\left(y-2 y^{2}+y^{3}\right) d y \\
& =4\left[\frac{y^{2}}{2}-\frac{2}{3} y^{3}+\frac{y^{4}}{4}\right]_{0}^{1}
\end{aligned}
$$

so that

$$
E(X Y)=\frac{1}{3}
$$

(e) Compute the covariance of X and Y.

Solution: Compute

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E(X Y)-E(X) \cdot E(Y) \\
& =\frac{1}{3}-\frac{4}{3} \cdot \frac{1}{3}
\end{aligned}
$$

so that,

$$
\operatorname{Cov}(X, Y)=-\frac{1}{9}
$$

3. Suppose that the joint pdf of the random vector (X, Y) is given by

$$
f_{(X, Y)}(x, y)=\frac{1}{2 \pi} e^{-\left(x^{2}+y^{2}\right) / 2}, \quad \text { for }-\infty<x<\infty \text { and }-\infty<y<\infty
$$

(a) Verify that $f_{(X, Y)}$ is indeed a joint pdf.

Solution: Use polar coordinates to evaluate

$$
\begin{aligned}
\iint_{\mathbb{R}^{2}} f_{(X, Y)}(x, y) d x d y & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(x^{2}+y^{2}\right) / 2} d x d y \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \int_{0}^{\infty} e^{-r^{2} / 2} r d r d \theta \\
& =\int_{0}^{\infty} e^{-r^{2} / 2} r d r
\end{aligned}
$$

thus, making the change of variables $u=r^{2} / 2$,

$$
\iint_{\mathbb{R}^{2}} f_{(X, Y)}(x, y) d x d y=\int_{0}^{\infty} e^{-u} d u=1
$$

Hence, $f_{(X, Y)}$ is indeed a joint pdf.
Alternate Solution: Observe that

$$
\begin{equation*}
f_{(X, Y)}(x, y)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \cdot \frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2} \tag{1}
\end{equation*}
$$

for $-\infty<x<\infty$ and $-\infty<y<\infty$, which can be written as

$$
\begin{equation*}
f_{(X, Y)}(x, y)=f_{X}(x) \cdot f_{Y}(y), \quad \text { for }-\infty<x<\infty \text { and }-\infty<y<\infty \tag{2}
\end{equation*}
$$

where f_{X} and f_{Y} are both pdfs of a standard normal random variable. It then follows that

$$
\iint_{\mathbb{R}^{2}} f_{(X, Y)}(x, y) d x d y=\int_{-\infty}^{\infty} f_{X}(x) d x \int_{-\infty}^{\infty} f_{Y}(y) d y=1
$$

(b) Compute the marginal distributions f_{X} and f_{Y}.

Solution: It follows from (1) that

$$
\begin{equation*}
f_{X}(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}, \quad \text { for }-\infty<x<\infty \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{Y}(y)=\frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2}, \quad \text { for }-\infty<y<\infty \tag{4}
\end{equation*}
$$

(c) Are X and and Y independent? Give a reason for your answer.

Solution: Yes; this follows from (2).
(d) Determine the distribution of $X+Y$.

Solution: It follows from (3) and (4) that $X \sim \operatorname{Normal}(0,1)$ and $Y \sim$ $\operatorname{Normal}(0,1)$; thus, since X and Y are independent, as seen in the previous part,

$$
\begin{equation*}
X+Y \sim \operatorname{Normal}(0,2) \tag{5}
\end{equation*}
$$

(e) Compute $\operatorname{Pr}(-\sqrt{2}<X+Y \leqslant 2 \sqrt{2})$.

Solution: Set $Z=\frac{X+Y}{\sqrt{2}}$. It then follows from (5) that $Z \sim \operatorname{Normal}(0,1)$. Then,

$$
\begin{aligned}
\operatorname{Pr}(-\sqrt{2}<X+Y \leqslant 2 \sqrt{2}) & =\operatorname{Pr}\left(-1<\frac{X+Y}{\sqrt{2}} \leqslant 2\right) \\
& =\operatorname{Pr}(-1<Z \leqslant 2)
\end{aligned}
$$

where $Z \sim \operatorname{Normal}(0,1)$. Consequently,

$$
\begin{aligned}
\operatorname{Pr}(-\sqrt{2}<X+Y \leqslant 2 \sqrt{2}) & =F_{z}(2)-F_{z}(-1) \\
& =F_{z}(2)-\left(1-F_{z}(1)\right) \\
& =F_{z}(2)+F_{z}(1)-1
\end{aligned}
$$

We then have that

$$
\operatorname{Pr}(-\sqrt{2}<X+Y \leqslant 2 \sqrt{2}) \approx 0.9772+0.8413-1=0.8185
$$

