Review Problems for Exam 2

(1) A random point (X, Y) is distributed uniformly on the square with vertices $(-1,-1),(1,-1),(1,1)$ and $(-1,1)$.
(a) Give the joint pdf for X and Y.
(b) Compute the following probabilities: (i) $P\left(X^{2}+Y^{2}<1\right)$, (ii) $P(2 X-Y>0)$, (iii) $P(|X+Y|<2)$.
(2) Let $F_{(X, Y)}$ be the joint cdf of two random variables X and Y. For real constants $a<b, c<d$, show that

$$
\operatorname{Pr}(a<X \leq b, c<Y \leq d)=F_{(X, Y)}(b, d)-F_{(X, Y)}(b, c)-F_{(X, Y)}(a, d)+F_{(X, Y)}(a, c) .
$$

Use this result to show that

$$
F(x, y)= \begin{cases}1 & \text { if } x+2 y \geq 1 \\ 0 & \text { otherwise }\end{cases}
$$

cannot be the joint cdf of two random variables.
(3) The random pair (X, Y) has the joint distribution

$\mathrm{X} \backslash \mathrm{Y}$	2	3	4
1	$\frac{1}{12}$	$\frac{1}{6}$	0
2	$\frac{1}{6}$	0	$\frac{1}{3}$
3	$\frac{1}{12}$	$\frac{1}{6}$	0

(a) Show that X and Y are not independent.
(b) Give a probability table for random variables U and V that have the same marginal distributions as X and Y, respectively, but are independent.
(4) Let X denote the number of trials needed to obtain the first head, and let Y be the number of trials needed to get two heads in repeated tosses of a fair coin. Are X and Y independent random variables?
(5) Prove that if the joint cdf of X and Y satisfies

$$
F_{X, Y}(x, y)=F_{X}(x) F_{Y}(y),
$$

then for any pair of intervals (a, b) and (c, d),

$$
P(a<X \leq b, c<Y \leq d)=P(a<X \leq b) P(c<Y \leq d)
$$

(6) Let $g(t)$ denote a non-negative, integrable function of a single variable with the property that

$$
\int_{0}^{\infty} g(t) d t=1
$$

Define

$$
f(x, y)= \begin{cases}\frac{2 g\left(\sqrt{x^{2}+y^{2}}\right)}{\pi \sqrt{x^{2}+y^{2}}} & \text { for } 0<x<\infty, 0<y<\infty \\ 0 & \text { otherwise }\end{cases}
$$

Show that $f(x, y)$ is a joint pdf for two random variables X and Y.
(7) Let $X \sim$ Exponential(1), and define Y to be the integer part of $X+1$; that is, $Y=i+1$ if and only if $i \leq X<i+1$, for $i=0,1,2, \ldots$ Find the pmf of Y, and deduce that $Y \sim \operatorname{Geometric}(p)$ for some $0<p<1$. What is the value of p ?
(8) Suppose that two persons make an appointment to meet between 5 PM and 6 PM at a certain location and they agree that neither person will wait more than 10 minutes for each person. If they arrive independently at random times between 5 PM and 6 PM , what is the probability that they will meet?
(9) Suppose that a book with n pages contains on average λ misprints per page. What is the probability that there will be at least m pages which contain more than k missprints?
(10) Suppose that the total number of items produced by a certain machine has a Poisson distribution with mean λ, all items are produced independently of one another, and the probability that any given item produced by the machine will be defective is p.
Let X denote the number of defective items produced by the machine.
(a) Determine the marginal distribution of the random variable X.
(b) Let Y denote the number of non-defective items produced by the machine. Show that X and Y are independent random variables.
(11) Suppose that the proportion of color blind people in a certain population is 0.005 . Estimate the probability that there will be more than one color blind person in a random sample of 600 people from that population.
(12) An airline sells 200 tickets for a certain flight on an airplane that has 198 seats because, on average, 1% of purchasers of airline tickets do not appear for departure of their flight. Estimate the probability that everyone who appears for the departure of this flight will have a seat.
(13) Let X and Y denote random variables. Show that

$$
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)
$$

Deduce that, if X and Y are independent, then

$$
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)
$$

