Solutions to Review Problems for Exam 2

1. A random point (X, Y) is distributed uniformly on the square with vertices $(-1,-1),(1,-1),(1,1)$ and $(-1,1)$.
(a) Give the joint pdf for X and Y.
(b) Compute the following probabilities:
(i) $\operatorname{Pr}\left(X^{2}+Y^{2}<1\right)$,
(ii) $\operatorname{Pr}(2 X-Y>0)$,
(iii) $\operatorname{Pr}(|X+Y|<2)$.

Solution: The square is pictured in Figure 1 and has area 4.

Figure 1: Sketch of square in Problem 1
(a) Consequently, the joint pdf of (X, Y) is given by

$$
f_{(X, Y)}(x, y)= \begin{cases}\frac{1}{4}, & \text { for }-1<x<1,-1<y<1 \tag{1}\\ 0 & \text { elsewhere }\end{cases}
$$

(b) Denoting the square in Figure 1 by R, it follows from (1) that, for any subset A of \mathbb{R}^{2},

$$
\begin{equation*}
\operatorname{Pr}[(x, y) \in A]=\iint_{A} f_{(x, Y)}(x, y) d x d y=\frac{1}{4} \cdot \operatorname{area}(A \cap R) \tag{2}
\end{equation*}
$$

that is, $\operatorname{Pr}[(x, y) \in A]$ is one-fourth the area of the portion of A in R.
We will use the formula in (2) to compute each of the probabilities in (i), (ii) and (iii).
(i) In this case, A is the circle of radius 1 around the origin in \mathbb{R}^{2} and pictured in Figure 2.

Figure 2: Sketch of A in Problem 1(i)
Note that the circle A in Figure 2 is entirely contained in the square R so that, by the formula in (2),

$$
\operatorname{Pr}\left(X^{2}+Y^{2}<1\right)=\frac{\operatorname{area}(A)}{4}=\frac{\pi}{4}
$$

(ii) The set A in this case is pictured in Figure 3 on page 3. Thus, in this case, $A \cap R$ is a trapezoid of area $2 \cdot \frac{\frac{1}{2}+\frac{3}{2}}{2}=2$, so

Figure 3: Sketch of A in Problem 1(ii)
that, by the formula in (2),

$$
\operatorname{Pr}(2 X-Y>0)=\frac{1}{4} \cdot \operatorname{area}(A \cap R)=\frac{1}{2}
$$

(iii) In this case, A is the region in the $x y$-plane between the lines $x+y=2$ and $x+y=-2$ (see Figure 4 on page 4). Thus, $A \cap R$ is R so that, by the formula in (2),

$$
\operatorname{Pr}(|X+Y|<2)=\frac{\operatorname{area}(R)}{4}=1
$$

2. Let $F_{(X, Y)}$ be the joint cdf of two random variables X and Y. For real constants $a<b, c<d$, show that

$$
\operatorname{Pr}(a<X \leqslant b, c<Y \leqslant d)=F_{(X, Y)}(b, d)-F_{(X, Y)}(b, c)-F_{(X, Y)}(a, d)+F_{(X, Y)}(a, c)
$$

Use this result to show that $F(x, y)=\left\{\begin{array}{ll}1 & \text { if } x+2 y \geqslant 1, \\ 0 & \text { otherwise },\end{array}\right.$ cannot be the joint cdf of two random variables.

Figure 4: Sketch of A in Problem 1(iii)

Solution: Let $A=\left\{(x, y) \in \mathbb{R}^{2} \mid a<x \leqslant b, c<y \leqslant d\right\}$; we then want to compute $\operatorname{Pr}[(X, Y) \in A]$.
We also define the following events:

$$
\begin{gathered}
A_{1}=\left\{(x, y) \in \mathbb{R}^{2} \mid x \leqslant b, y \leqslant d\right\}, \\
A_{2}=\left\{(x, y) \in \mathbb{R}^{2} \mid x \leqslant a, y \leqslant c\right\}, \\
A_{3}=\left\{(x, y) \in \mathbb{R}^{2} \mid x \leqslant a, c<y \leqslant d\right\},
\end{gathered}
$$

and

$$
A_{4}=\left\{(x, y) \in \mathbb{R}^{2} \mid a<x \leqslant b, y \leqslant c\right\} .
$$

Then, A_{1} is a disjoint union of the events A, A_{2}, A_{3} and A_{4} (see Figure 5). It then follows that

$$
\operatorname{Pr}\left[(X, Y) \in A_{1}\right]=\operatorname{Pr}\left[(X, Y) \in A \cup A_{2} \cup A_{3} \cup A_{4}\right]
$$

or

$$
\begin{align*}
\operatorname{Pr}\left[(X, Y) \in A_{1}\right]=\operatorname{Pr}[(X, Y) \in A]+ & \operatorname{Pr}\left[(X, Y) \in A_{2}\right]+ \tag{3}\\
& +\operatorname{Pr}\left[(X, Y) \in A_{3}\right]+\operatorname{Pr}\left[(X, Y) \in A_{4}\right] .
\end{align*}
$$

Observe that

$$
\operatorname{Pr}\left[(X, Y) \in A_{1}\right]=\operatorname{Pr}(X \leqslant b, Y \leqslant d)=F_{(X, Y)}(b, d)
$$

Figure 5: Events A, A_{1}, A_{2}, A_{3} and A_{4} in the $x y$-plane
and

$$
\operatorname{Pr}\left[(X, Y) \in A_{2}\right]=\operatorname{Pr}(X \leqslant a, Y \leqslant c)=F_{(X, Y)}(a, c)
$$

It then follows from equation (3) that

$$
\begin{align*}
\operatorname{Pr}[(X, Y) \in A]= & F_{(X, Y)}(b, d)-F_{(X, Y)}(a, c) \\
& -\operatorname{Pr}\left[(X, Y) \in A_{3}\right]-\operatorname{Pr}\left[(X, Y) \in A_{4}\right] . \tag{4}
\end{align*}
$$

On the other hand, observe that

$$
\begin{equation*}
\operatorname{Pr}\left[(X, Y) \in A_{3} \cup A_{2}\right]=\operatorname{Pr}(X \leqslant a, Y \leqslant d)=F_{(X, Y)}(a, d) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Pr}\left[(X, Y) \in A_{4} \cup A_{2}\right]=\operatorname{Pr}(X \leqslant b, Y \leqslant c)=F_{(X, Y)}(b, c) \tag{6}
\end{equation*}
$$

Moreover,

$$
\begin{aligned}
\operatorname{Pr}\left[(X, Y) \in\left(A_{3} \cup A_{2}\right) \cup\left(A_{4} \cup A_{2}\right)\right]=\quad & \operatorname{Pr}\left[(X, Y) \in A_{3} \cup A_{2}\right] \\
& +\operatorname{Pr}\left[(X, Y) \in A_{4} \cup A_{2}\right] \\
& -\operatorname{Pr}\left[(X, Y) \in A_{2}\right],
\end{aligned}
$$

since $\left(A_{3} \cup A_{2}\right) \cap\left(A_{4} \cup A_{2}\right)=A_{2}$. It then follows from equations (5) and (6) that

$$
\begin{aligned}
\operatorname{Pr}\left[(X, Y) \in\left(A_{3} \cup A_{2}\right) \cup\left(A_{4} \cup A_{2}\right)\right]= & F_{(X, Y)}(a, d) \\
& +F_{(X, Y)}(b, c) \\
& -F_{(X, Y)}(a, c) .
\end{aligned}
$$

However, since $\left(A_{3} \cup A_{2}\right) \cup\left(A_{4} \cup A_{2}\right)=A_{2} \cup A_{3} \cup A_{4}$, we also get that

$$
\begin{aligned}
\operatorname{Pr}\left[(X, Y) \in\left(A_{3} \cup A_{2}\right) \cup\left(A_{4} \cup A_{2}\right)\right]=\operatorname{Pr} & {\left[(X, Y) \in A_{2}\right] } \\
& +\operatorname{Pr}\left[(X, Y) \in A_{3}\right] \\
& +\operatorname{Pr}\left[(X, y) \in A_{4}\right] .
\end{aligned}
$$

We therefore get, using $\operatorname{Pr}\left[(X, Y) \in A_{2}\right]=F_{(X, Y)}(a, c)$, that

$$
\begin{array}{r}
\operatorname{Pr}\left[(X, Y) \in A_{3}\right]+\operatorname{Pr}\left[(X, Y) \in A_{4}\right]=F_{(X, Y)}(a, d)+F_{(X, Y)}(b, c) \\
-2 F_{(X, Y)}(a, c) .
\end{array}
$$

Substituting this into equation (4) yields

$$
\begin{aligned}
\operatorname{Pr}[(X, Y) \in A]= & F_{(X, Y)}(b, d)-F_{(X, Y)}(a, c) \\
& -\stackrel{F_{(X, Y)}}{ }(a, d)-\stackrel{F_{(X, Y)}}{ }(b, c)+2 F_{(X, Y)}(a, c),
\end{aligned}
$$

from which we get
$\operatorname{Pr}[(X, Y) \in A]=F_{(X, Y)}(b, d)-F_{(X, Y)}(a, d)-F_{(X, Y)}(b, c)+F_{(X, Y)}(a, c)$.
Next, suppose that $F(x, y)=\left\{\begin{array}{ll}1 & \text { if } x+2 y \geqslant 1, \\ 0 & \text { otherwise },\end{array}\right.$ is the joint cdf of two random variables X and Y. Consider the set

$$
A=\left\{(x, y) \in \mathbb{R}^{2} \mid 0<x \leqslant 1,0<y \leqslant 1 / 2\right\} .
$$

By what we just proved,

$$
\begin{aligned}
\operatorname{Pr}[(X, Y) \in A] & =F(1,1 / 2)-F(0,1 / 2)-F(1,0)+F(0,0) \\
& =1-1-1+0 \\
& =-1<0,
\end{aligned}
$$

which is impossible since $\operatorname{Pr}[(X, Y) \in A] \geqslant 0$. Therefore, F cannot be a joint pdf.
3. The random pair (X, Y) has the joint distribution shown in Table 1.
(a) Show that X and Y are not independent.

$X \backslash Y$	2	3	4
1	$\frac{1}{12}$	$\frac{1}{6}$	0
2	$\frac{1}{6}$	0	$\frac{1}{3}$
3	$\frac{1}{12}$	$\frac{1}{6}$	0

Table 1: Joint Probability Distribution for X and $Y, p_{(X, Y)}$

$X \backslash Y$	2	3	4	p_{X}
1	$\frac{1}{12}$	$\frac{1}{6}$	0	$\frac{1}{4}$
2	$\frac{1}{6}$	0	$\frac{1}{3}$	$\frac{1}{2}$
3	$\frac{1}{12}$	$\frac{1}{6}$	0	$\frac{1}{4}$
p_{Y}	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	1

Table 2: Joint pdf for X and Y and marginal distributions p_{X} and p_{Y}
Solution: Table 2 shows the marginal distributions of X and Y on the margins.
Observe from Table 2 that

$$
p_{(X, Y)}(1,4)=0,
$$

while

$$
p_{X}(1)=\frac{1}{4} \quad \text { and } \quad p_{Y}(4)=\frac{1}{3} .
$$

Thus,

$$
p_{X}(1) \cdot p_{Y}(4)=\frac{1}{12}
$$

so that

$$
p_{(X, Y)}(1,4) \neq p_{X}(1) \cdot p_{Y}(4)
$$

and, therefore, X and Y are not independent.
(b) Give a probability table for random variables U and V that have the same marginal distributions as X and Y, respectively, but are independent.

Solution: Table 3 on page 8 shows the joint pmf of (U, V) and the marginal distributions, p_{U} and p_{V}.
4. Let X denote the number of trials needed to obtain the first head, and let Y be the number of trials needed to get two heads in repeated tosses of a fair coin. Are X and Y independent random variables?

$U \backslash V$	2	3	4	p_{U}
1	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{4}$
2	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{2}$
3	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{4}$
p_{V}	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	1

Table 3: Joint pdf for U and V and their marginal distributions.

Solution: X has a geometric distribution with parameter $p=\frac{1}{2}$, so that

$$
\begin{equation*}
p_{X}(k)=\frac{1}{2^{k}}, \quad \text { for } k=1,2,3, \ldots \tag{7}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\operatorname{Pr}[Y=2]=\frac{1}{4} \tag{8}
\end{equation*}
$$

since, in two repeated tosses of a coin, the events are $H H, H T, T H$ and $T T$, and these events are equally likely.
Next, consider the joint event $(X=2, Y=2)$. Note that

$$
(X=2, Y=2)=[X=2] \cap[Y=2]=\emptyset,
$$

since $[X=2]$ corresponds to the event $T H$, while $[Y=2]$ to the event $H H$. Thus,

$$
\operatorname{Pr}(X=2, Y=2)=0
$$

while

$$
p_{X}(2) \cdot p_{Y}(2)=\frac{1}{4} \cdot \frac{1}{4}=\frac{1}{16},
$$

by (7) and (8). Thus,

$$
p_{(X, Y)}(2,2) \neq p_{X}(2) \cdot p_{X}(2) .
$$

Hence, X and Y are not independent.
5. Prove that if the joint cdf of X and Y satisfies

$$
\begin{equation*}
F_{(X, Y)}(x, y)=F_{X}(x) F_{Y}(y) \tag{9}
\end{equation*}
$$

then for any pair of intervals (a, b) and (c, d),

$$
\operatorname{Pr}(a<X \leq b, c<Y \leq d)=\operatorname{Pr}(a<X \leqslant b) \operatorname{Pr}(c<Y \leqslant d)
$$

Solution: We use the result of Problem 3 in this review sheet:
$\operatorname{Pr}(a<X \leq b, c<Y \leq d)=F_{(X, Y)}(b, d)-F_{(X, Y)}(b, c)-F_{(X, Y)}(a, d)+F_{(X, Y)}(a, c) ;$ thus, using the assumption in (9),

$$
\begin{aligned}
\operatorname{Pr}(a<X \leq b, c<Y \leq d)= & F_{X}(b) F_{Y}(d)-F_{X}(b) F_{Y}(c) \\
& -F_{X}(a) F_{Y}(d)+F_{X}(a) F_{Y}(c) \\
= & \left(F_{X}(b)-F_{X}(a)\right) F_{Y}(d) \\
& -\left(F_{X}(b)-F_{X}(a)\right) F_{Y}(c) \\
= & \left(F_{X}(b)-F_{X}(a)\right)\left(F_{Y}(d)-F_{Y}(c)\right) \\
= & \operatorname{Pr}(a<X \leqslant b) \operatorname{Pr}(c<Y \leqslant d)
\end{aligned}
$$

which was to be shown.
6. Let $g(t)$ denote a non-negative, integrable function of a single variable with the property that

$$
\int_{0}^{\infty} g(t) d t=1
$$

Define

$$
f(x, y)=\left\{\begin{array}{l}
\frac{2 g\left(\sqrt{x^{2}+y^{2}}\right)}{\pi \sqrt{x^{2}+y^{2}}} \quad \text { for } 0<x<\infty, 0<y<\infty \\
\text { 0otherwise. }
\end{array}\right.
$$

Show that $f(x, y)$ is a joint pdf for two random variables X and Y.
Solution: First observe that f is non-negative since g is non-negative. Next, compute

$$
\iint_{\mathbb{R}^{2}} f(x, y) d x d y=\int_{0}^{\infty} \int_{0}^{\infty} \frac{2 g\left(\sqrt{x^{2}+y^{2}}\right)}{\pi \sqrt{x^{2}+y^{2}}} d x d y
$$

Switching to polar coordinates we then get that

$$
\begin{aligned}
\iint_{\mathbb{R}^{2}} f(x, y) d x d y & =\int_{0}^{\pi / 2} \int_{0}^{\infty} \frac{2 g(r)}{\pi r} r d r d \theta \\
& =\frac{\pi}{2} \int_{0}^{\infty} \frac{2}{\pi} g(r) d r \\
& =\int_{0}^{\infty} g(r) d r \\
& =1
\end{aligned}
$$

and therefore $f(x, y)$ is indeed a joint pdf for two random variables X and Y.
7. Let $X \sim \operatorname{Exponential(1),~and~define~} Y$ to be the integer part of $X+1$; that is, $Y=i+1$ if and only if $i \leqslant X<i+1$, for $i=0,1,2, \ldots$ Find the pmf of Y, and deduce that $Y \sim \operatorname{Geometric}(p)$ for some $0<p<1$. What is the value of p ?

Solution: Compute

$$
\operatorname{Pr}[Y=i+1]=\operatorname{Pr}[i \leqslant X<i+1]=\operatorname{Pr}[i<X \leqslant i+1],
$$

since X is continuous; so that

$$
\begin{equation*}
\operatorname{Pr}[Y=i+1]=\int_{i}^{i+1} f_{X}(x) d x \tag{10}
\end{equation*}
$$

where

$$
f_{X}(x)= \begin{cases}e^{-x} & \text { if } x>0 \tag{11}\\ 0 & \text { if } x \leqslant 0\end{cases}
$$

given that $X \sim$ Exponential(1).
Evaluating the integral in (10), for $i \geqslant 0$ and f_{X} as given in (11), yields

$$
\begin{aligned}
\operatorname{Pr}[Y=i+1] & =\int_{i}^{i+1} e^{-x} d x \\
& =\left[-e^{-x}\right]_{i}^{i+1} \\
& =e^{-i}-e^{-i-1}
\end{aligned}
$$

so that

$$
\begin{equation*}
\operatorname{Pr}[Y=i+1]=\left(\frac{1}{e}\right)^{i}\left(1-\frac{1}{e}\right) \tag{12}
\end{equation*}
$$

It follows from (12) that $Y \sim \operatorname{Geometric}(p)$ with $p=1-\frac{1}{e}$.
8. Suppose that two persons make an appointment to meet between 5 PM and 6 PM at a certain location and they agree that neither person will wait more than 10 minutes for each person. If they arrive independently at random times between 5 PM and 6 PM , what is the probability that they will meet?

Solution: Let X denote the arrival time of the first person and Y that of the second person. Then X and Y are independent and uniformly distributed on the interval (5 PM, 6 PM), in hours. It then follows that the joint pdf of X and Y is

$$
f_{(X, Y)}(x, y)= \begin{cases}1, & \text { if } 5 \mathrm{PM}<x<6 \mathrm{PM}, 5 \mathrm{PM}<x<6 \mathrm{PM} \\ 0, & \text { elsewhere }\end{cases}
$$

Define $W=|X-Y|$; this is the time that one person would have to wait for the other one. Then, W takes on values, w, between 0 and 1 (in hours). The probability that that a person would have to wait more than 10 minutes is

$$
\operatorname{Pr}(W>1 / 6)
$$

since the time is being measured in hours. It then follows that the probability that the two persons will meet is

$$
1-\operatorname{Pr}(W>1 / 6)=\operatorname{Pr}(W \leqslant 1 / 6)=F_{W}(1 / 6)
$$

We will therefore first find the cdf of W. To do this, we compute

$$
\begin{aligned}
\operatorname{Pr}(W \leqslant w) & =\operatorname{Pr}(|X-Y| \leqslant w), \quad \text { for } 0<w<1, \\
& =\iint_{A} f_{(X, Y)}(x, y) d x d y
\end{aligned}
$$

where A is the event

$$
A=\left\{(x, y) \in \mathbb{R}^{2}|5 \mathrm{PM}<x<6 \mathrm{PM}, 5 \mathrm{PM}<y<6 \mathrm{PM},|x-y| \leqslant w\} .\right.
$$

Figure 6: Event A in the $x y$-plane

This event is pictured in Figure 6.
We then have that

$$
\begin{aligned}
\operatorname{Pr}(W \leqslant w) & =\iint_{A} d x d y \\
& =\operatorname{area}(A)
\end{aligned}
$$

where the area of A can be computed by subtracting from 1 the area of the two corder triangles shown in Figure 6:

$$
\begin{aligned}
\operatorname{Pr}(W \leqslant w) & =1-(1-w)^{2} \\
& =2 w-w^{2}
\end{aligned}
$$

Consequently, $F_{w}(w)=2 w-w^{2}$ for $0<w<1$. Thus the probability that the two persons will meet is

$$
F_{W}(1 / 6)=2 \cdot \frac{1}{6}-\left(\frac{1}{6}\right)^{2}=\frac{11}{36}
$$

or about 30.56%.
9. Suppose that a book with n pages contains on average λ misprints per page. What is the probability that there will be at least m pages which contain more than k missprints?

Solution: Let Y denote the number of misprints in one page. Then, we may assume that Y follows a $\operatorname{Poisson}(\lambda)$ distribution; so that

$$
\operatorname{Pr}[Y=r]=\frac{\lambda^{r}}{r!} e^{-\lambda}, \quad \text { for } r=0,1,2, \ldots
$$

Thus, the probability that there will be more than k missprints in a given page is

$$
\begin{aligned}
p & =\operatorname{Pr}(Y>k) \\
& =1-\operatorname{Pr}(Y \leqslant k),
\end{aligned}
$$

so that

$$
\begin{equation*}
p=1-\sum_{r=0}^{k} \frac{\lambda^{r}}{r!} e^{-\lambda} \tag{13}
\end{equation*}
$$

Next, let X denote the number of the pages out of the n that contain more than k missprints. Then, $X \sim \operatorname{Binomial}(n, p)$, where p is as given in (13). Then the probability that there will be at least m pages which contain more than k missprints is

$$
\operatorname{Pr}[X \geqslant m]=\sum_{\ell=m}^{n}\binom{n}{\ell} p^{\ell}(1-p)^{n-\ell}
$$

where

$$
p=1-\sum_{r=0}^{k} \frac{\lambda^{r}}{r!} e^{-\lambda} .
$$

10. Suppose that the total number of items produced by a certain machine has a Poisson distribution with mean λ, all items are produced independently of one another, and the probability that any given item produced by the machine will be defective is p.
Let X denote the number of defective items produced by the machine.
(a) Determine the marginal distribution of the number of defective items, X.

Solution: Let N denote the number of items produced by the machine. Then,

$$
\begin{equation*}
N \sim \operatorname{Poisson}(\lambda) \tag{14}
\end{equation*}
$$

so that

$$
\operatorname{Pr}[N=n]=\frac{\lambda^{n}}{n!} e^{-\lambda}, \quad \text { for } n=0,1,2, \ldots
$$

Now, since all items are produced independently of one another, and the probability that any given item produced by the machine will be defective is p, X has a conditional distribution (conditioned on $N=n$) that is $\operatorname{Binomial}(n, p)$; thus,
$\operatorname{Pr}[X=k \mid N=n]= \begin{cases}\binom{n}{k} p^{k}(1-p)^{n-k}, & \text { for } k=0,1,2, \ldots, n ; \\ 0 & \text { elsewhere. }\end{cases}$
Then,

$$
\begin{aligned}
\operatorname{Pr}[X=k] & =\sum_{n=0}^{\infty} \operatorname{Pr}[X=k, N=n] \\
& =\sum_{n=0}^{\infty} \operatorname{Pr}[N=n] \cdot \operatorname{Pr}[X=k \mid N=n],
\end{aligned}
$$

where $\operatorname{Pr}[X=k \mid N=n]=0$ for $n<k$, so that, using (14) and (15),

$$
\begin{align*}
\operatorname{Pr}[X=k] & =\sum_{n=k}^{\infty} \frac{\lambda^{n}}{n!} e^{-\lambda} \cdot\binom{n}{k} p^{k}(1-p)^{n-k} \tag{16}\\
& =\frac{e^{-\lambda}}{k!} p^{k} \sum_{n=k}^{\infty} \lambda^{n} \frac{1}{(n-k)!}(1-p)^{n-k}
\end{align*}
$$

Next, make the change of variables $\ell=n-k$ in the last summation in (16) to get

$$
\operatorname{Pr}[X=k]=\frac{e^{-\lambda}}{k!} p^{k} \sum_{\ell=0}^{\infty} \lambda^{\ell+k} \frac{1}{\ell!}(1-p)^{\ell}
$$

so that

$$
\begin{aligned}
\operatorname{Pr}[X=k] & =\frac{(\lambda p)^{k}}{k!} e^{-\lambda} \sum_{\ell=0}^{\infty} \frac{1}{\ell!}[\lambda(1-p)]^{\ell} \\
& =\frac{(\lambda p)^{k}}{k!} e^{-\lambda} e^{\lambda(1-p)} \\
& =\frac{(\lambda p)^{k}}{k!} e^{-\lambda p},
\end{aligned}
$$

which shows that

$$
\begin{equation*}
X \sim \operatorname{Poisson}(\lambda p) \tag{17}
\end{equation*}
$$

(b) Let Y denote the number of non-defective items produced by the machine. Show that X and Y are independent random variables.

Solution: Similar calculations to those leading to (17) show that

$$
\begin{equation*}
Y \sim \operatorname{Poisson}(\lambda(1-p)), \tag{18}
\end{equation*}
$$

since the probability of an item coming out non-defective is $1-p$. Next, observe that $Y=N-X$ and compute the joint probability

$$
\begin{aligned}
\operatorname{Pr}[X=k, Y=\ell] & =\operatorname{Pr}[X=k, N=k+\ell] \\
& =\operatorname{Pr}[N=k+\ell] \cdot \operatorname{Pr}[X=k \mid N=k+\ell] \\
& =\frac{\lambda^{k+\ell}}{(k+\ell)!} e^{-\lambda} \cdot\binom{k+\ell}{k} p^{k}(1-p)^{\ell}
\end{aligned}
$$

by virtue of (14) and (15). Thus,

$$
\begin{aligned}
\operatorname{Pr}[X=k, Y=\ell] & =\frac{\lambda^{k+\ell}}{k!\ell!} e^{-\lambda} p^{k}(1-p)^{\ell} \\
& =\frac{\lambda^{k+\ell}}{k!\ell!} e^{-\lambda} p^{k}(1-p)^{\ell}
\end{aligned}
$$

where

$$
e^{-\lambda}=e^{-[p+(1-p)] \lambda}=e^{-p \lambda} \cdot e^{-(1-p) \lambda}
$$

Thus,

$$
\begin{aligned}
\operatorname{Pr}[X=k, Y=\ell] & =\frac{(p \lambda)^{k}}{k!} e^{-p \lambda} \cdot \frac{[(1-p) \lambda]^{\ell}}{\ell!} e^{-(1-p) \lambda} \\
& =p_{X}(k) \cdot p_{Y}(\ell),
\end{aligned}
$$

in view of (17) and (18). Hence, X and Y are independent.
11. Suppose that the proportion of color blind people in a certain population is 0.005 . Estimate the probability that there will be more than one color blind person in a random sample of 600 people from that population.

Solution: Set $p=0.005$ and $n=600$. Denote by Y the number of color blind people in the sample. Then, we may assume that $Y \sim$ $\operatorname{Binomial}(n, p)$. Since p is small and n is large, we may use the Poisson approximation to the binomial distribution to get

$$
\operatorname{Pr}[Y=k] \approx \frac{\lambda^{k}}{k!} e^{-\lambda},
$$

where $\lambda=n p=3$.
Then,

$$
\begin{aligned}
\operatorname{Pr}[Y>1] & =1-\operatorname{Pr}[Y \leqslant 1] \\
& \approx 1-e^{-3}-3 e^{-3} \\
& \approx 0.800852 .
\end{aligned}
$$

Thus, the probability that there will be more than one color blind person in a random sample of 600 people from that population is about 80%.
12. An airline sells 200 tickets for a certain flight on an airplane that has 198 seats because, on average, 1% of purchasers of airline tickets do not appear for departure of their flight. Estimate the probability that everyone who appears for the departure of this flight will have a seat.

Solution: Set $p=0.01, n=200$ and let Y denote the number of ticket purchasers that do not appear for departure. Then, we may assume that $Y \sim \operatorname{Binomial}(n, p)$. We want to estimate the probability $\operatorname{Pr}[Y \geqslant 2]$. Using the Poisson (λ), with $\lambda=n p=2$, approximation to the distribution of Y, we get

$$
\begin{aligned}
\operatorname{Pr}[Y \geqslant 2] & =1-\operatorname{Pr}[Y \leqslant 1] \\
& \approx 1-e^{-2}-2 e^{-2} \\
& \approx 0.5940 .
\end{aligned}
$$

Thus, the probability that everyone who appears for the departure in this flight will have a seat is about 59.4%.
13. Let X and Y denote random variables. Show that

$$
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)
$$

Deduce that, if X and Y are independent, then

$$
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)
$$

Solution: We compute

$$
\operatorname{Var}(X+Y)=E\left[\left[X+Y-\left(\mu_{X}+\mu_{Y}\right)\right]^{2}\right]
$$

where $\mu_{X}=E(X), \mu_{Y}=E(Y)$, and

$$
\begin{aligned}
{\left[X+Y-\left(\mu_{X}+\mu_{Y}\right)\right]^{2} } & =\left[\left(X-\mu_{X}\right)+\left(Y-\mu_{Y}\right)\right]^{2} \\
& =\left(X-\mu_{X}\right)^{2}+2\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)+\left(Y-\mu_{Y}\right)^{2} ;
\end{aligned}
$$

so that, using the linearity of the expectation and the definition of covariance

$$
\begin{aligned}
\operatorname{Var}(X+Y) & =E\left[\left(X-\mu_{X}\right)^{2}\right]+2 E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]+E\left[\left(Y-\mu_{Y}\right)^{2}\right] \\
& =\operatorname{Var}(X)+2 \operatorname{Cov}(X, Y)+\operatorname{Var}(Y)
\end{aligned}
$$

which was to be shown.
Now, if X and Y are independent, then $\operatorname{Cov}(X, Y)=0$. We therefore get that, if X and Y are independent, then

$$
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)
$$

