Exam 3 (Part I)

Friday, December 5, 2014
Name: \qquad
This is the in-class portion of Exam 2. This is a closed-book and closed-notes exam; you may consult only the "Special Distributions" and the "Normal Distribution Probabilities Table" handouts.

Show all significant work and give reasons for all your answers. Use your own paper and/or the paper provided by the instructor. You have up to 40 minutes to work on the following 2 questions. Relax.

1. Let $X_{1}, X_{2}, X_{3} \ldots$ denote a sequence of random variables.
(a) State the Central Limit Theorem in the context of the sequence $\left(X_{k}\right)$.
(b) Let $X_{1}, X_{2}, \ldots, X_{n}$ denote random sample of size 49 from a $\operatorname{Uniform}(0,1)$ distribution. Let \bar{X}_{n} denote the sample mean. Use the Central Limit Theorem to estimate the probability

$$
\operatorname{Pr}\left(0.4<\bar{X}_{n}<0.6\right) .
$$

2. Let X denote a random variable with mean μ and variance σ^{2}.
(a) State the Chebyshev Inequality.
(b) Let $X_{1}, X_{2}, \ldots, X_{n}$ denote random sample of size n from a distribution of mean μ and variance σ^{2}. Apply the Chebyshev inequality to get an upper bound for the probability

$$
\operatorname{Pr}\left(\left|\bar{X}_{n}-\mu\right| \geqslant k \sigma\right)
$$

where k is a positive number.
(c) Let Y_{n} denote the number of heads in n tosses of a fair coin. Use the result from part (b) to obtain an upper bound for the the probability that Y_{n} deviates from $n / 2$ by more than $5 \sqrt{n}$.

