Exam 3 (Part I)

Friday, December 5, 2014

Name: _____

This is the in-class portion of Exam 2. This is a closed-book and closed-notes exam; you may consult only the "Special Distributions" and the "Normal Distribution Probabilities Table" handouts.

Show all significant work and give reasons for all your answers. Use your own paper and/or the paper provided by the instructor. You have up to 40 minutes to work on the following 2 questions. Relax.

- 1. Let $X_1, X_2, X_3...$ denote a sequence of random variables.
 - (a) State the Central Limit Theorem in the context of the sequence (X_k) .
 - (b) Let X_1, X_2, \ldots, X_n denote random sample of size 49 from a Uniform(0, 1) distribution. Let \overline{X}_n denote the sample mean. Use the Central Limit Theorem to estimate the probability

$$\Pr(0.4 < \overline{X}_n < 0.6).$$

- 2. Let X denote a random variable with mean μ and variance σ^2 .
 - (a) State the Chebyshev Inequality.
 - (b) Let X_1, X_2, \ldots, X_n denote random sample of size *n* from a distribution of mean μ and variance σ^2 . Apply the Chebyshev inequality to get an upper bound for the probability

$$\Pr(|\overline{X}_n - \mu| \ge k\sigma),$$

where k is a positive number.

(c) Let Y_n denote the number of heads in *n* tosses of a fair coin. Use the result from part (b) to obtain an upper bound for the the probability that Y_n deviates from n/2 by more than $5\sqrt{n}$.