Solutions to Exam 3 (Part I)

1. Let $X_{1}, X_{2}, X_{3} \ldots$ denote a sequence of random variables.
(a) State the Central Limit Theorem in the context of the sequence $\left(X_{k}\right)$.

Answer: Let $\left(X_{k}\right)$ be a sequence of independent, identically distributed random variables of mean μ and variance σ^{2}. Then,

$$
\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}} \xrightarrow{D} Z \sim \operatorname{Normal}(0,1) \text { as } n \rightarrow \infty .
$$

(b) Let $X_{1}, X_{2}, \ldots, X_{n}$ denote random sample of size 49 from a $\operatorname{Uniform}(0,1)$ distribution. Let \bar{X}_{n} denote the sample mean. Use the Central Limit Theorem to estimate the probability

$$
\operatorname{Pr}\left(0.4<\bar{X}_{n}<0.6\right)
$$

Solution: In this case, the random variables, X_{k}, are independent, identically distributed with mean $\mu=\frac{1}{2}$ and variance $\sigma^{2}=\frac{1}{12}$; or $\mu=0.5$ and $\sigma^{2} \doteq 0.083$. Thus, applying the Central Limit Theorem,

$$
\operatorname{Pr}\left(0.4<\bar{X}_{n}<0.6\right) \approx \operatorname{Pr}\left(\frac{0.4-0.5}{0.289 / \sqrt{49}}<Z<\frac{0.6-0.5}{0.289 / \sqrt{49}}\right)
$$

where $Z \sim \operatorname{Normal}(0,1)$, or

$$
\begin{aligned}
\operatorname{Pr}\left(0.4<\bar{X}_{n}<0.6\right) & \approx \operatorname{Pr}(-2.42<Z<2.42) \\
& =\operatorname{Pr}(-2.42<Z \leqslant 2.42) \\
& =F_{Z}(2.42)-F_{Z}(-2.42)
\end{aligned}
$$

so that,

$$
\begin{equation*}
\operatorname{Pr}\left(0.4<\bar{X}_{n}<0.6\right) \approx 2 F_{Z}(2.42)-1 \tag{1}
\end{equation*}
$$

where $Z \sim \operatorname{Normal}(0,1)$.
Using a table of standard normal probabilities we obtain from (1) that

$$
\operatorname{Pr}\left(0.4<\bar{X}_{n}<0.6\right) \approx 2(0.9922)-1
$$

or

$$
\operatorname{Pr}\left(0.4<\bar{X}_{n}<0.6\right) \approx 0.9844
$$

or about 98.44%.
2. Let X denote a random variable with mean μ and variance σ^{2}.
(a) State the Chebyshev Inequality.

Answer: Let X be a random variable with mean μ and finite variance $\operatorname{Var}(X)$; then, for every $\varepsilon>0$,

$$
\begin{equation*}
\operatorname{Pr}(|X-\mu| \geqslant \varepsilon) \leqslant \frac{\operatorname{Var}(X)}{\varepsilon^{2}} \tag{2}
\end{equation*}
$$

(b) Let $X_{1}, X_{2}, \ldots, X_{n}$ denote random sample of size n from a distribution of mean μ and variance σ^{2}. Apply the Chebyshev inequality to get an upper bound for the probability

$$
\operatorname{Pr}\left(\left|\bar{X}_{n}-\mu\right| \geqslant k \sigma\right),
$$

where k is a positive number.
Solution: Applying (2) to $X=\bar{X}_{n}$ and $\varepsilon=k \sigma$, so that

$$
E\left(\bar{X}_{n}\right)=\mu \quad \text { and } \quad \operatorname{Var}\left(\bar{X}_{n}\right)=\frac{\sigma^{2}}{n}
$$

we obtain that

$$
\operatorname{Pr}\left(\left|\bar{X}_{n}-\mu\right| \geqslant k \sigma\right) \leqslant \frac{\sigma^{2} / n}{(k \sigma)^{2}}
$$

so that

$$
\begin{equation*}
\operatorname{Pr}\left(\left|\bar{X}_{n}-\mu\right| \geqslant k \sigma\right) \leqslant \frac{1}{n k^{2}} . \tag{3}
\end{equation*}
$$

(c) Let Y_{n} denote the number of heads in n tosses of a fair coin. Use the result from part (b) to obtain an upper bound for the the probability that Y_{n} deviates from $n / 2$ by more than $5 \sqrt{n}$.
Solution: Let $\left(X_{k}\right)$ denote a sequence of independent Bernoulli $(1 / 2)$ trials. We then have that

$$
Y_{n}=\sum_{k=1}^{n} X_{k}
$$

so that

$$
\begin{equation*}
Y_{n}=n \bar{X}_{n} . \tag{4}
\end{equation*}
$$

Use (4) to compute

$$
\begin{equation*}
\operatorname{Pr}\left(\left|Y_{n}-n / 2\right| \geqslant 5 \sqrt{n}\right)=\operatorname{Pr}\left(\left|\bar{X}_{n}-1 / 2\right| \geqslant 5 / \sqrt{n}\right) \tag{5}
\end{equation*}
$$

Next, apply the result in (3) with

$$
\mu=E\left(X_{k}\right)=\frac{1}{2}, \quad \sigma^{2}=\operatorname{Var}\left(X_{k}\right)=\frac{1}{4}, \quad \text { and } \quad k=\frac{10}{\sqrt{n}}
$$

to obtain from (5) that

$$
\operatorname{Pr}\left(\left|Y_{n}-n / 2\right| \geqslant 5 \sqrt{n}\right)=\operatorname{Pr}\left(\left|\bar{X}_{n}-1 / 2\right| \geqslant \frac{10}{\sqrt{n}} \cdot \frac{1}{2}\right) \leqslant \frac{1}{n(10 / \sqrt{n})^{2}}
$$

so that

$$
\operatorname{Pr}\left(\left|Y_{n}-n / 2\right| \geqslant 5 \sqrt{n}\right) \leqslant \frac{1}{100}
$$

