Review Problems for Exam 3

1. Let X denote a positive random variable such that $\ln (X)$ has a $\operatorname{Normal}(0,1)$ distribution.
(a) Give the pdf of X and compute its expectation.
(b) Estimate $\operatorname{Pr}(X \leq 6.5)$.
2. Forty seven digits are chosen at random and with replacement from $\{0,1,2, \ldots, 9\}$. Estimate the probability that their average lies between 4 and 6 .
3. Let $X_{1}, X_{2}, \ldots, X_{30}$ be independent random variables each having a discrete distribution with pmf:

$$
p(x)= \begin{cases}1 / 4, & \text { if } x=0 \text { or } x=2 \\ 1 / 2 & \text { if } x=1 \\ 0 & \text { otherwise }\end{cases}
$$

Estimate the probability that $X_{1}+X_{2}+\cdots+X_{30}$ is at most 33 .
4. Roll a balanced die 36 times. Let Y denote the sum of the outcomes in each of the 36 rolls. Estimate the probability that $108 \leq Y \leq 144$.
Suggestion: Since the event of interest is $(Y \in\{108,109, \ldots, 144\})$, rewrite $\operatorname{Pr}(108 \leq Y \leq 144)$ as

$$
\operatorname{Pr}(107.5<Y \leq 144.5)
$$

5. Let $Y \sim \operatorname{Binomial}(100,1 / 2)$. Use the Central Limit Theorem to estimate the value of $\operatorname{Pr}(Y=50)$.
Suggestion: Observe that

$$
\operatorname{Pr}(Y=50)=\operatorname{Pr}(49.5<Y \leqslant 50.5)
$$

since Y is discrete.
6. Let $Y \sim \operatorname{Binomial}(n, 0.55)$. Find the smallest value of n such that, approximately,

$$
\operatorname{Pr}(Y / n>1 / 2) \geq 0.95
$$

7. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a Poisson distribution with mean λ. Thus, $Y=\sum_{i=1}^{n} X_{i}$ has a Poisson distribution with mean $n \lambda$. Moreover, by the Central Limit Theorem, $\bar{X}=Y / n$ has, approximately, a $\operatorname{Normal}(\lambda, \lambda / n)$ distribution for large n. Show that $u(Y / n)=\sqrt{Y / n}$ is a function of Y / n which is essentially free of λ.
8. Suppose that factory produces a number X of items in a week, where X can be modeled by a random variable with mean 50 . Suppose also that the variance for a week's production is known to be 25 . What can be said about the probability that this week's production will be between 40 and 60 ?
9. Let $\left(X_{n}\right)$ denote a sequence of nonnegative random variables with means $\mu_{n}=$ $E\left(X_{n}\right)$, for each $n=1,2,3, \ldots$. Assume that $\lim _{n \rightarrow \infty} \mu_{n}=0$. Show that X_{n} converges in probability to 0 as $n \rightarrow \infty$.
10. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a Poisson distribution with mean λ. Thus, $Y_{n}=\sum_{i=1}^{n} X_{i}$ has a Poisson distribution with mean $n \lambda$. Moreover, by the Central Limit Theorem, $\bar{X}_{n}=Y_{n} / n$ has, approximately, a $\operatorname{Normal}(\lambda, \lambda / n)$ distribution for large n. Show that, for large values of n, the distribution of $2 \sqrt{n}\left(\sqrt{\frac{Y_{n}}{n}}-\sqrt{\lambda}\right)$ is independent of λ.
