Assignment \#10

Due on Friday, October 10, 2014

Read Section 2.9 on Bases and Section 2.10 on Dimension in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 1.6 on Bases and Dimension in Damiano and Little (pp. 47-55)

Background and Definitions

(Definition of dimension of a subspace of \mathbb{R}^{n}). Let W be a subspace of \mathbb{R}^{n}. The dimension of W, denoted by $\operatorname{dim}(W)$, is the number of vectors in any basis for W.

Do the following problems

1. Let
$W_{1}=\left\{\left.\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \in \mathbb{R}^{3} \right\rvert\, x+y-z=0\right\}$ and $W_{2}=\left\{\left.\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \in \mathbb{R}^{3} \right\rvert\, x+2 y+z=0\right\}$.
Find a bases for W_{1} and W_{2} and compute $\operatorname{dim}\left(W_{1}\right)$ and $\operatorname{dim}\left(W_{2}\right)$.
2. Let W_{1} and W_{2} be as defined in Problem 1. Find a basis for $W_{1} \cap W_{2}$ and compute $\operatorname{dim}\left(W_{1} \cap W_{2}\right)$.
3. Let W_{1} and W_{2} be as defined in Problem 1. Find a basis for $W_{1}+W_{2}$ and compute $\operatorname{dim}\left(W_{1}+W_{2}\right)$.
Use the results of Problems 1 and 2 to verify that

$$
\operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)-\operatorname{dim}\left(W_{1} \cap W_{2}\right)
$$

4. Let $A=\left(\begin{array}{rrrr}1 & -2 & -3 & 0 \\ -1 & 0 & 2 & 1 \\ 1 & 4 & 0 & -3\end{array}\right)$.
(a) Find a basis for the column space, C_{A}, of the matrix A and compute $\operatorname{dim}\left(C_{A}\right)$.
(b) Find a basis for the null space, N_{A}, of the matrix A and compute $\operatorname{dim}\left(N_{A}\right)$.
(c) Compute $\operatorname{dim}\left(N_{A}\right)+\operatorname{dim}\left(C_{A}\right)$. What do you observe?
5. Let A denote the matrix defined in the previous problem. Consider the rows of A as row vectors in \mathbb{R}^{4}, and let R_{A} denote the span of the rows of the matrix A. Find a basis for R_{A}, and compute $\operatorname{dim}\left(R_{A}\right)$. What do you find interesting about $\operatorname{dim}\left(R_{A}\right)$ and $\operatorname{dim}\left(C_{A}\right)$, which was computed in the previous problem.
