Solutions to Assignment \#10

1. Let

$$
W_{1}=\left\{\left.\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \in \mathbb{R}^{3} \right\rvert\, x+y-z=0\right\} \text { and } W_{2}=\left\{\left.\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \in \mathbb{R}^{3} \right\rvert\, x+2 y+z=0\right\} .
$$

Find a bases for W_{1} and W_{2} and compute $\operatorname{dim}\left(W_{1}\right)$ and $\operatorname{dim}\left(W_{2}\right)$.
Solution: To find a basis for W_{1}, we solve the equation

$$
x+y-z=0
$$

for x to get

$$
x=-y+z
$$

thus, setting $y=-t$ and $z=s$, where t and s are arbitrary parameters, we obtain that

$$
\begin{aligned}
& x=t+s \\
& y=-t \\
& z=s
\end{aligned}
$$

or, in vector notation,

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
t+s \\
-t \\
s
\end{array}\right)
$$

or

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=t\left(\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right)+s\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) .
$$

We have therefore shown that

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \in W_{1} \quad \text { iff } \quad\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \in \operatorname{span}\left\{\left(\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)\right\}
$$

We therefor have that $W_{1}=\operatorname{span}\left\{\left(\begin{array}{r}1 \\ -1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)\right\}$. Thus, the set

$$
\left\{\left(\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)\right\}
$$

is a basis for W_{1}, since it is also linearly independent; thus, $\operatorname{dim}\left(W_{1}\right)=$ 2.

Similarly, for W_{2}, we solve

$$
x+2 y+z=0
$$

and obtain that

$$
\left\{\left(\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right),\left(\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right)\right\}
$$

is a basis for W_{2}; thus, $\operatorname{dim}\left(W_{2}\right)=2$.
2. Let W_{1} and W_{2} be as defined in Problem 1. Find a basis for $W_{1} \cap W_{2}$ and compute $\operatorname{dim}\left(W_{1} \cap W_{2}\right)$.

Solution: Vectors $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ in the intersection of W_{1} and W_{2} solve the equations

$$
x+y-z=0
$$

and

$$
x+2 y+z=0
$$

simultaneously. Therefore, to find $W_{1} \cap W_{2}$, we need to solve the system of equations

$$
\left\{\begin{array}{l}
x+y-z=0 \tag{1}\\
x+2 y+z=0
\end{array}\right.
$$

We therefore perform elementary row operations on the augmented matrix

$$
\begin{aligned}
& R_{1} \\
& R_{2}
\end{aligned} \quad\left(\begin{array}{rrr|r}
1 & 1 & -1 & 0 \\
1 & 2 & 1 & 0
\end{array}\right)
$$

to obtain the reduced matrix

$$
\left(\begin{array}{rrr|r}
1 & 0 & -3 & 0 \\
0 & 1 & 2 & 0
\end{array}\right)
$$

Thus, the system in (1) is equivalent to

$$
\left\{\begin{align*}
x-3 z & =0 \tag{2}\\
y+2 z & =0
\end{align*}\right.
$$

To solve the system in (2) solve for the leading variables to get

$$
\begin{aligned}
& x=3 z \\
& y=-2 z
\end{aligned}
$$

and set $z=t$, where t is an arbitrary parameter, to get that

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
3 t \\
-2 t \\
t
\end{array}\right)
$$

or

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=t\left(\begin{array}{r}
3 \\
-2 \\
1
\end{array}\right) .
$$

We have therefore shown that

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \in W_{1} \cap W_{2} \quad \text { if and only if } \quad\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \in \operatorname{span}\left\{\left(\begin{array}{r}
3 \\
-2 \\
1
\end{array}\right)\right\}
$$

that is, $W_{1} \cap W_{2}=\operatorname{span}\left\{\left(\begin{array}{r}3 \\ -2 \\ 1\end{array}\right)\right\}$. Thus, the set

$$
\left\{\left(\begin{array}{r}
3 \\
-2 \\
1
\end{array}\right)\right\}
$$

is a basis for $W_{1} \cap W_{2}$ and, therefore, $\operatorname{dim}\left(W_{1} \cap W_{2}\right)=1$.
3. Let W_{1} and W_{2} be as defined in Problem 1. Find a basis for $W_{1}+W_{2}$ and compute $\operatorname{dim}\left(W_{1}+W_{2}\right)$.

Use the results of Problems 1 and 2 to verify that

$$
\operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)-\operatorname{dim}\left(W_{1} \cap W_{2}\right)
$$

Solution: Since $W_{1}=\operatorname{span}\left\{\left(\begin{array}{r}1 \\ -1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)\right\}$ and $W_{2}=\left\{\left(\begin{array}{r}2 \\ -1 \\ 0\end{array}\right),\left(\begin{array}{r}1 \\ 0 \\ -1\end{array}\right)\right\}$, it follows from Problem 4 in Assignment \#8 that

$$
W_{1}+W_{2}=\operatorname{span}\left\{\left(\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right),\left(\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right)\right\} .
$$

Thus, in order to find a basis for $W_{1}+W_{2}$, we need to find a linearly independent subset of

$$
\left\{\left(\begin{array}{r}
1 \tag{3}\\
-1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right),\left(\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right)\right\} .
$$

which also spans $W_{1}+W_{2}$. To do this, label the vectors in the set in (3) by v_{1}, v_{2}, v_{3} and v_{4}, respectively, and consider the vector equation:

$$
\begin{equation*}
c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}+c_{4} v_{4}=\mathbf{0} \tag{4}
\end{equation*}
$$

where $\mathbf{0}$ denotes the zero-vector in \mathbb{R}^{3}. This equation is equivalent to the the homogeneous system

$$
\begin{cases}c_{1}+c_{2}+2 c_{3}+c_{4} & =0 \tag{5}\\ -c_{1}-c_{3} & =0 \\ c_{2}-c_{4} & =0\end{cases}
$$

The augmented matrix of this system in (5) is:

$$
\begin{aligned}
& R_{1} \\
& R_{2} \\
& R_{3}
\end{aligned} \quad\left(\begin{array}{rrrr|r}
1 & 1 & 2 & 1 & 0 \\
-1 & 0 & -1 & 0 & 0 \\
0 & 1 & 0 & -1 & 0
\end{array}\right)
$$

which can be reduced to

$$
\left(\begin{array}{rrrr|r}
1 & 0 & 0 & -2 & 0 \\
0 & 1 & 0 & -1 & 0 \\
0 & 0 & 1 & 2 & 0
\end{array}\right) .
$$

Thus, the system in (5) is equivalent to the system

$$
\left\{\begin{aligned}
c_{1}-2 c_{4} & =0 \\
c_{2}-c_{4} & =0 \\
c_{3}+2 c_{4} & =0
\end{aligned}\right.
$$

Hence, the solutions to the vector equation in (4) are

$$
\left\{\begin{array}{l}
c_{1}=2 t \tag{6}\\
c_{2}=t \\
c_{3}=-2 t \\
c_{4}=t
\end{array}\right.
$$

where t is an arbitrary parameter. Taking $t=1$ in (6) yields from (4) the linear relation

$$
2 v_{1}+v_{2}-2 v_{3}+v_{4}=\mathbf{0}
$$

which shows that $v_{4}=-2 v_{1}-2 v_{2}+2 v_{3}$; that is, $v_{4} \in \operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\}$. Consequently,

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \subseteq \operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\}
$$

from which we get that

$$
\operatorname{span}\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \subseteq \operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\},
$$

since $\operatorname{span}\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is the smallest subspace of \mathbb{R}^{3} which contains $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. Combining this with

$$
\operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\} \subseteq \operatorname{span}\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}
$$

we conclude that

$$
\operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\}=\operatorname{span}\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}
$$

that is $\left\{v_{1}, v_{2}, v_{3}\right\}$ spans $W_{1}+W_{2}$.
Next, we show that $\left\{v_{1}, v_{2}, v_{3}\right\}$ is linearly independent. This time we consider the vector equation

$$
\begin{equation*}
c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=\mathbf{0}, \tag{7}
\end{equation*}
$$

where $\mathbf{0}$ denotes the zero-vector in \mathbb{R}^{3}. This equation is equivalent to the the homogeneous system

$$
\left\{\begin{array}{cl}
c_{1}+c_{2}+2 c_{3} & =0 \\
-c_{1}-c_{3} & =0 \\
c_{2} & =0
\end{array}\right.
$$

The augmented matrix of this system is:

$$
\begin{aligned}
& R_{1} \\
& R_{2} \\
& R_{3}
\end{aligned} \quad\left(\begin{array}{rrr:r}
1 & 1 & 2 & 0 \\
-1 & 0 & -1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right),
$$

which can be reduced to

$$
\left(\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Then, the vector equation (7) has only the trivial solution, and therefore, $\left\{v_{1}, v_{2}, v_{3}\right\}$ is linearly independent. Hence, the set

$$
\left\{\left(\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right)\right\}
$$

is a basis for $W_{1}+W_{2}$ and therefore $\operatorname{dim}\left(W_{1}+W_{2}\right)=3$.
Observe that the equation

$$
\operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)-\operatorname{dim}\left(W_{1} \cap W_{2}\right)
$$

is verified since

$$
3=2+2-1
$$

4. Let $A=\left(\begin{array}{rrrr}1 & -2 & -3 & 0 \\ -1 & 0 & 2 & 1 \\ 1 & 4 & 0 & -3\end{array}\right)$.
(a) Find a basis for the column space, C_{A}, of the matrix A and compute $\operatorname{dim}\left(C_{A}\right)$.

Solution: C_{A} is the span of the columns of A :

$$
C_{A}=\operatorname{span}\left\{\left(\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right),\left(\begin{array}{r}
-2 \\
0 \\
4
\end{array}\right),\left(\begin{array}{r}
-3 \\
2 \\
0
\end{array}\right),\left(\begin{array}{r}
0 \\
1 \\
-3
\end{array}\right)\right\} .
$$

Denote the columns of A by v_{1}, v_{2}, v_{3} and v_{4}, respectively. To find a basis for C_{4}, we need to find a linearly independent subset of $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ which also spans C_{A}. In order to do this, we seek for nontrivial solutions to the vector equation:

$$
\begin{equation*}
c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}+c_{4} v_{4}=\mathbf{0} \tag{8}
\end{equation*}
$$

where $\mathbf{0}$ denotes the zero-vector in \mathbb{R}^{3}. This equation is equivalent to the the homogeneous system

$$
\left\{\begin{align*}
c_{1}-2 c_{2}-3 c_{3} & =0 \tag{9}\\
-c_{1}+2 c_{3}+c_{4} & =0 \\
c_{1}+4 c_{2}-3 c_{4} & =0
\end{align*}\right.
$$

The augmented matrix of this system is:

$$
\begin{aligned}
& R_{1} \\
& R_{2} \\
& R_{3}
\end{aligned} \quad\left(\begin{array}{rrrr|r}
1 & -2 & -3 & 0 & 0 \\
-1 & 0 & 2 & 1 & 0 \\
1 & 4 & 0 & -3 & 0
\end{array}\right),
$$

which can be reduced to the matrix

$$
\left(\begin{array}{cccc|c}
1 & 0 & -2 & -1 & 0 \\
0 & 1 & 1 / 2 & -1 / 2 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

We therefore get that the system in (9) is equivalent to

$$
\left\{\begin{align*}
c_{1}-2 c_{3}-c_{4} & =0 \tag{10}\\
c_{2}+(1 / 2) c_{3}-(1 / 2) c_{4} & =0
\end{align*}\right.
$$

Solving for the leading variables in (10) yields the solutions

$$
\left\{\begin{array}{l}
c_{1}=4 t+2 s \tag{11}\\
c_{2}=-t+s \\
c_{3}=2 t \\
c_{4}=2 s
\end{array}\right.
$$

where t and s are arbitrary parameters.
Taking $t=1$ and $s=0$ in (11) yields from (8) the linear relation

$$
4 v_{1}-v_{2}+2 v_{3}=\mathbf{0}
$$

which shows that $v_{3}=-4 v_{1}+v_{2}$; that is, $v_{3} \in \operatorname{span}\left\{v_{1}, v_{2}\right\}$. Similarly, taking $t=0$ and $s=1$ in (11) yields

$$
2 v_{1}+v_{2}+2 v_{4}=\mathbf{0}
$$

which shows that $v_{4}=-(1 / 2) v_{1}-(1 / 2) v_{2}$; that is, $v_{4} \in \operatorname{span}\left\{v_{1}, v_{2}\right\}$. We then have that both v_{3} and v_{4} are in the span of $\left\{v_{1}, v_{2}\right\}$. Consequently,

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \subseteq \operatorname{span}\left\{v_{1}, v_{2}\right\}
$$

from which we get that

$$
\operatorname{span}\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \subseteq \operatorname{span}\left\{v_{1}, v_{2}\right\}
$$

since $\operatorname{span}\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is the smallest subspace of \mathbb{R}^{3} which contains $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. Combining this with

$$
\operatorname{span}\left\{v_{1}, v_{2}\right\} \subseteq \operatorname{span}\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}
$$

we conclude that

$$
\operatorname{span}\left\{v_{1}, v_{2}\right\}=\operatorname{span}\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}
$$

that is $\left\{v_{1}, v_{2}\right\}$ spans C_{A}. Set $B=\left\{v_{1}, v_{2}\right\}$.
It remains to show that B is linearly independent. To prove this, consider the vector equation

$$
\begin{equation*}
c_{1} v_{1}+c_{2} v_{2}=\mathbf{0} \tag{12}
\end{equation*}
$$

which leads to the system

$$
\left\{\begin{aligned}
c_{1}-2 c_{2} & =0 \\
-c_{2} & =0 \\
-c_{1} & =0 \\
c_{1}+4 c_{2} & =0
\end{aligned}\right.
$$

which can be seen to have only the trivial solution: $c_{1}=c_{2}=0$. It then follows that the vector equation (12) has only the trivial solution, and therefore B is linearly independent. We therefore conclude that the set

$$
B=\left\{\left(\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right),\left(\begin{array}{r}
-2 \\
0 \\
4
\end{array}\right)\right\}
$$

is a basis for C_{A}. Hence, $\operatorname{dim}\left(C_{A}\right)=2$.
(b) Find a basis for the null space, N_{A}, of the matrix A and compute $\operatorname{dim}\left(N_{A}\right)$.

Solution: N_{A} is the solution space of the homogeneous system

$$
\left\{\begin{align*}
c_{1}-2 c_{2}-3 c_{3} & =0 \tag{13}\\
-c_{1}+2 c_{3}+c_{4} & =0 \\
c_{1}+4 c_{2}-3 c_{4} & =0
\end{align*}\right.
$$

which is the same as system (9) in the previous part. Therefore, system (13) is equivalent to the reduced system

$$
\left\{\begin{align*}
c_{1}-2 c_{3}-c_{4} & =0 \tag{14}\\
c_{2}+(1 / 2) c_{3}-(1 / 2) c_{4} & =0
\end{align*}\right.
$$

Hence, N_{A} is the same as the solution space of system (14), which is given by

$$
\left\{\begin{array}{l}
c_{1}=4 t+2 s \\
c_{2}=-t+s \\
c_{3}=2 t \\
c_{4}=2 s,
\end{array}\right.
$$

where t and s are arbitrary parameters. Thus,

$$
N_{A}=\operatorname{span}\left\{\left(\begin{array}{r}
4 \\
-1 \\
2 \\
0
\end{array}\right),\left(\begin{array}{l}
2 \\
1 \\
0 \\
2
\end{array}\right)\right\}
$$

Since the set

$$
\left\{\left(\begin{array}{r}
4 \\
-1 \\
2 \\
0
\end{array}\right),\left(\begin{array}{l}
2 \\
1 \\
0 \\
2
\end{array}\right)\right\}
$$

is linearly independent, it forms a basis for N_{A}. Therefore,

$$
\operatorname{dim}\left(N_{A}\right)=2
$$

(c) Compute $\operatorname{dim}\left(N_{A}\right)+\operatorname{dim}\left(C_{A}\right)$. What do you observe?

Solution: $\operatorname{dim}\left(N_{A}\right)+\operatorname{dim}\left(C_{A}\right)=2+2$, which is the number of columns of A.
5. Let A denote the matrix defined in the previous problem. Consider the rows of A as row vectors in \mathbb{R}^{4}, and let R_{A} denote the span of the rows of the matrix A. Find a basis for R_{A}, and compute $\operatorname{dim}\left(R_{A}\right)$. What do you find interesting about $\operatorname{dim}\left(R_{A}\right)$ and $\operatorname{dim}\left(C_{A}\right)$, which was computed in the previous problem.

Solution: Denote the rows of A by R_{1}, R_{2} and R_{3}, respectively:

$$
\begin{aligned}
& R_{1} \\
& R_{2} \\
& R_{3}
\end{aligned} \quad\left(\begin{array}{rrrr}
1 & -2 & -3 & 0 \\
-1 & 0 & 2 & 1 \\
1 & 4 & 0 & -3
\end{array}\right) .
$$

Perform elementary row operations on this matrix, but this time keep track of them to obtain:

$$
\begin{array}{r}
R_{1} \\
R_{1}+R_{2} \\
-R_{1}+R_{3}
\end{array} \quad\left(\begin{array}{rrrr}
1 & 0 & -2 & -1 \\
0 & -2 & -1 & 1 \\
0 & 6 & 3 & -3
\end{array}\right),
$$

followed by

$$
\begin{array}{r}
R_{1} \\
R_{1}+R_{2} \\
3\left(R_{1}+R_{2}\right)+\left(-R_{1}+R_{3}\right)
\end{array} \quad\left(\begin{array}{rrrr}
1 & 0 & -2 & -1 \\
0 & -2 & -1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

Observe that the last row is made up of zeros from which we get that

$$
2 R_{1}+3 R_{2}+R_{3}=O
$$

where O denotes a row of four zeros. We then obtain that

$$
R_{3}=-2 R_{1}-3 R_{3}
$$

which shows that

$$
R_{3} \in \operatorname{span}\left\{R_{1}, R_{2}\right\}
$$

Thus,

$$
\left\{R_{1}, R_{2}, R_{3}\right\} \subseteq \operatorname{span}\left\{R_{1}, R_{2}\right\}
$$

Thus,

$$
\operatorname{span}\left\{R_{1}, R_{2}, R_{3}\right\} \subseteq \operatorname{span}\left\{R_{1}, R_{2}\right\}
$$

We therefore conclude that

$$
R_{A}=\operatorname{span}\left\{R_{1}, R_{2}\right\}
$$

Since R_{1} and R_{2} are not multiples of each other, the set $\left\{R_{1}, R_{2}\right\}$ is linearly independent. We therefore get that $\operatorname{dim}\left(R_{A}\right)=2$. Observe that this is the same as the dimension of C_{A}.

