Assignment \#11

Due on Monday, October 13, 2014
Read Section 2.11 on Coordinates in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 1.6 on Bases and Dimension in Damiano and Little (pp. 47-55)

Background and Definitions

- (Ordered Basis). Let W be a subspace of \mathbb{R}^{n} of dimension k and let B denote a basis for W. If the elements in B are listed in a specified order: $B=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$, then B is called an ordered basis. In this sense, the basis $B_{1}=\left\{w_{2}, w_{1}, \ldots, w_{k}\right\}$ is different from B even though, as sets, B and B_{1} are the same; that is, the contain the same elements.
- (Coordinates Relative to a Basis). Let W be a subspace of \mathbb{R}^{n} and

$$
B=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}
$$

be an ordered basis for W. Given any vector, v, in W, the coordinates of v relative to the basis B, are the unique set of scalars $c_{1}, c_{2}, \ldots, c_{k}$ such that

$$
v=c_{1} w_{1}+c_{2} w_{2}+\cdots+c_{k} w_{k} .
$$

We denote the coordinates of v relative to the basis B by the symbol $[v]_{B}$ and write $[v]_{B}=\left(\begin{array}{c}c_{1} \\ c_{2} \\ \vdots \\ c_{k}\end{array}\right)$. The vector $[v]_{B}$ in \mathbb{R}^{k} is also called the coordinates vector for v with respect to the basis B.

Do the following problems

1. Let $W=\left\{\left.\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \in \mathbb{R}^{3} \right\rvert\, 3 x-2 y+z=0\right\}$.
(a) Show that the set $B=\left\{\left(\begin{array}{r}1 \\ 0 \\ -3\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right)\right\}$ is a basis for W.
(b) Let $v=\left(\begin{array}{l}2 \\ 3 \\ 0\end{array}\right)$. Show that $v \in W$ and compute $[v]_{B}$.
2. Suppose that B is an ordered basis for \mathbb{R}^{2} satisfying

$$
\left[\binom{3}{2}\right]_{B}=\binom{1}{1} \quad \text { and } \quad\left[\binom{-1}{4}\right]_{B}=\binom{2}{1} .
$$

Determine the two vectors in the basis B.
3. Find a condition on the scalars a, b, c and d so that the columns of the matrix

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

are linearly independent in \mathbb{R}^{2}.
Suggestion: Consider the cases $a=0$ and $a \neq 0$ separately.
4. Let the matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ satisfy the condition you discovered in Problem 3. Prove that the columns of A span \mathbb{R}^{2}.
5. Let the matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ satisfy the condition you discovered in Problem 3 and denote the columns of A by C_{1} and C_{2}, respectively; that is,

$$
C_{1}=\binom{a}{c} \quad \text { and } \quad C_{2}=\binom{b}{d}
$$

Find the coordinates of any vector $v=\binom{x}{y}$ in \mathbb{R}^{2} with respect to the ordered basis $B=\left\{C_{1}, C_{2}\right\}$.

