Solutions to Assignment \#11

1. Let $W=\left\{\left.\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \in \mathbb{R}^{3} \right\rvert\, 3 x-2 y+z=0\right\}$.
(a) Show that the set $B=\left\{\left(\begin{array}{r}1 \\ 0 \\ -3\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right)\right\}$ is a basis for W.

Solution: First note that B is linearly independent since the vectors in B are not multiples of each other. Thus, it remains to show that B spans W.
Vectors $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ in W are solutions to the equation

$$
3 x-2 y+z=0
$$

which we can solve for z to obtain

$$
z=-3 x+2 y
$$

Setting $x=t$ and $y=s$, where t and s are arbitrary parameters, we obtain the solutions

$$
\begin{aligned}
& x=t \\
& y=s \\
& z=-3 t+2 s
\end{aligned}
$$

We therefore get that

$$
W=\operatorname{span}\left\{\left(\begin{array}{r}
1 \\
0 \\
-3
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right)\right\}
$$

That is, B spans W. Since B is also linearly independent, it follows that B is a basis for W.
(b) Let $v=\left(\begin{array}{l}2 \\ 3 \\ 0\end{array}\right)$. Show that $v \in W$ and compute $[v]_{B}$.

Solution: First, note that

$$
3(2)-2(3)+0=0,
$$

so that $v \in W$.
Next, to find $[v]_{B}$ solve for c_{1} and c_{2} in the vector equation

$$
c_{1}\left(\begin{array}{r}
1 \\
0 \\
-3
\end{array}\right)+c_{2}\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right)=v,
$$

or

$$
\left(\begin{array}{c}
c_{1} \\
c_{2} \\
-3 c_{1}+2 c_{2}
\end{array}\right)=\left(\begin{array}{c}
2 \\
3 \\
0
\end{array}\right)
$$

which has the solution: $c_{1}=2, c_{2}=3$. It then follows that

$$
[v]_{B}=\binom{2}{3}
$$

2. Suppose that B is an ordered basis for \mathbb{R}^{2} satisfying

$$
\left[\binom{3}{2}\right]_{B}=\binom{1}{1} \quad \text { and } \quad\left[\binom{-1}{4}\right]_{B}=\binom{2}{1}
$$

Determine the two vectors in the basis B.
Solution: Denote the vectors in B by v_{1} and v_{2} and suppose that

$$
v_{1}=\binom{a}{c} \quad \text { and } \quad v_{2}=\binom{b}{d} .
$$

We then have that

$$
\binom{a}{c}+\binom{b}{d}=\binom{3}{2}
$$

and

$$
2\binom{a}{c}+\binom{b}{d}=\binom{-1}{4}
$$

since

$$
\left[\binom{3}{2}\right]_{B}=\binom{1}{1} \quad \text { and } \quad\left[\binom{-1}{4}\right]_{B}=\binom{2}{1}
$$

respectively. We therefore obtain the system of equations

$$
\left\{\begin{array}{l}
a+b=3 \tag{1}\\
c+d=2 \\
2 a+b=-1 \\
2 c+d=4
\end{array}\right.
$$

The system in (1) can be solved to yield:

$$
\left\{\begin{array}{l}
a=-4 \\
b=7 \\
c=2 \\
d=0
\end{array}\right.
$$

Therefore,

$$
v_{1}=\binom{-4}{2} \quad \text { and } \quad v_{2}=\binom{7}{0}
$$

and so

$$
B=\left\{\binom{-4}{2},\binom{7}{0}\right\} .
$$

3. Find a condition on the scalars a, b, c and d so that the columns of the matrix

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

are linearly independent in \mathbb{R}^{2}.
Suggestion: Consider the cases $a=0$ and $a \neq 0$ separately.
Solution: Put $v_{1}=\binom{a}{c}$ and $v_{2}=\binom{b}{d}$, and consider the vector equation

$$
\begin{equation*}
c_{1} v_{1}+c_{2} v_{2}=\mathbf{0} \tag{2}
\end{equation*}
$$

This leads to the system of equations

$$
\left\{\begin{array}{l}
a c_{1}+b c_{2}=0 \tag{3}\\
c c_{1}+d c_{2}=0
\end{array}\right.
$$

We can solve system (3) by performing elementary row operations in the augmented matrix

$$
\begin{align*}
& R_{1} \tag{4}\\
& R_{2}
\end{align*} \quad\left(\begin{array}{ll|l}
a & b & 0 \\
c & d & 0
\end{array}\right) .
$$

We consider two cases separately: $a \neq 0$ and $a=0$.
If $a \neq 0$, we can perform the elementary row operation $\frac{1}{a} R_{1} \rightarrow R_{1}$ on the matrix in (4) to get

$$
\left(\begin{array}{cc|c}
1 & b / a & 0 \tag{5}\\
c & d & 0
\end{array}\right)
$$

Next, perform $-c R_{1}+R+2 \rightarrow R_{2}$ on the matrix in (5) to get

$$
\left(\begin{array}{cc|c}
1 & b / a & 0 \tag{6}\\
0 & -(b c / a)+d & 0
\end{array}\right) .
$$

For the system corresponding to the augmented matrix in (6) to have only the trivial solution, we must require that

$$
-\frac{b c}{a}+d \neq 0
$$

or

$$
\frac{-b c+a d}{a} \neq 0
$$

Thus, multiplying by $a \neq 0$ in the previous equation, we get that the vector equation in (2) has only the trivial solution when

$$
\begin{equation*}
a d-b c \neq 0 \tag{7}
\end{equation*}
$$

On the other hand, if $a=0$, then the augmented matrix in (4) becomes

$$
\begin{align*}
& R_{1} \tag{8}\\
& R_{2}
\end{align*} \quad\left(\begin{array}{ll|l}
0 & b & 0 \\
c & d & 0
\end{array}\right)
$$

Performing $R_{1} \leftrightarrow R_{2}$ on the matrix in (8) then yields

$$
\left(\begin{array}{cc|c}
c & d & 0 \tag{9}\\
0 & b & 0
\end{array}\right) .
$$

Hence, for the system corresponding to the matrix in (9) to have only the trivial solution, we must require that

$$
c \neq 0 \quad \text { and } \quad b \neq 0
$$

which can be summarized as

$$
b c \neq 0 .
$$

In either case, the condition on the scalars a, b, c and d so that the columns of the matrix

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

are linearly independent in \mathbb{R}^{2} is that

$$
a d-b c \neq 0
$$

4. Let the matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ satisfy the condition you discovered in Problem 3. Prove that the columns of A span \mathbb{R}^{2}.

Solution: We found out in the solution to Problem 3 that, if

$$
a d-b c \neq 0
$$

then the columns of A are linearly independent in \mathbb{R}^{2}. Since $\operatorname{dim}\left(\mathbb{R}^{2}\right)=$ 2 , it follows that the columns of A also span \mathbb{R}^{2}.
5. Let the matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ satisfy the condition you discovered in Problem 3 and denote the columns of A by C_{1} and C_{2}, respectively; that is,

$$
C_{1}=\binom{a}{c} \quad \text { and } \quad C_{2}=\binom{b}{d}
$$

Find the coordinates of any vector $v=\binom{x}{y}$ in \mathbb{R}^{2} with respect to the ordered basis $B=\left\{C_{1}, C_{2}\right\}$.

Solution: By Problems 3 and 4, if $a d-b c \neq 0$, then B is a basis for \mathbb{R}^{2}. To find the coordinates of any vector $v=\binom{x}{y}$ in \mathbb{R}^{2} with
respect to the ordered basis $B=\left\{C_{1}, C_{2}\right\}$, we need to solve the vector equation

$$
\begin{equation*}
c_{1}\binom{a}{c}+c_{2}\binom{b}{d}=\binom{x}{y} \tag{10}
\end{equation*}
$$

which leads to the system

$$
\left\{\begin{array}{l}
a c_{1}+b c_{2}=x \tag{11}\\
c c_{1}+d c_{2}=y
\end{array}\right.
$$

The corresponding augmented matrix is

$$
\begin{align*}
& R_{1} \tag{12}\\
& R_{2}
\end{align*} \quad\left(\begin{array}{ll|l}
a & b & x \\
c & d & y
\end{array}\right)
$$

which can be reduced in the same way that the matrix in (4) was reduced. For instance, in the case in which $a d-b c \neq 0$ and $a \neq 0$, we perform the elementary row operations $\frac{1}{a} R_{1} \rightarrow R_{1}$ and $-c R_{1}+R+$ $2 \rightarrow R_{2}$ in succession to get

$$
\left(\begin{array}{cc|c}
1 & b / a & x / a \tag{13}\\
0 & (a d-b c) / a & -\frac{c}{a} x+y
\end{array}\right) .
$$

Now, since $a d-b c \neq 0$, we can multiply the second row of the matrix in (13) by $a /(a d-b c)$ to get that

$$
\left(\begin{array}{cc|c}
1 & b / a & x / a \tag{14}\\
0 & 1 & -c x / \Delta+a y / \Delta
\end{array}\right)
$$

where we have used Δ to denote $a d-b c$. Finally, performing the elementary row operation $-\frac{b}{a} R_{2}+R_{1} \rightarrow R_{1}$ on the matrix in (14), we get that

$$
\left(\begin{array}{ll|r}
1 & 0 & d x / \Delta-b y / \Delta \tag{15}\\
0 & 1 & -c x / \Delta+a y / \Delta
\end{array}\right)
$$

We can therefore read from the matrix in (15) that the solution to the vector equation in (10) is

$$
\begin{aligned}
& c_{1}=(d x-b y) / \Delta \\
& c_{2}=(-c x+a y) / \Delta
\end{aligned}
$$

It then follows that the coordinate vector for $v=\binom{x}{y}$ in \mathbb{R}^{2} with respect to the ordered basis $B=\left\{C_{1}, C_{2}\right\}$ is

$$
[v]_{B}=\binom{(d x-b y) / \Delta}{(-c x+a y) / \Delta},
$$

where $\Delta=a d-b c \neq 0$, or

$$
[v]_{B}=\frac{1}{\Delta}\binom{d x-b y}{-c x+a y}
$$

