Solutions to Assignment \#12

1. The vectors $v_{1}=\left(\begin{array}{r}-1 \\ 1 \\ 2\end{array}\right)$, and $\vec{v}_{2}=\left(\begin{array}{r}1 \\ 0 \\ -1\end{array}\right)$ span a two-dimensional subspace in \mathbb{R}^{3}; in other words, a plane through the origin. Give two unit vectors which are orthogonal to each other, and which also span the plane.

Solution: Let one of the unit vectors be

$$
\widehat{u}_{1}=\frac{1}{\left\|v_{1}\right\|} v_{1}=\frac{1}{\sqrt{6}}\left(\begin{array}{r}
-1 \\
1 \\
2
\end{array}\right) .
$$

To find the second vector in the basis, let

$$
u=v_{1}+c v_{2},
$$

where c is determined so that

$$
\left\langle u, v_{1}\right\rangle=0
$$

Thus,

$$
\left\langle v_{1}+c v_{2}, v_{1}\right\rangle=0,
$$

from which we get that

$$
\left\|v_{1}\right\|^{2}+c\left\langle v_{2}, v_{1}\right\rangle=0
$$

or

$$
6-3 c=0
$$

which yields that $c=2$. It then follows that

$$
u=v_{1}+2 v_{2}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

is orthogonal to v_{1}. We then let

$$
\widehat{u}_{2}=\frac{1}{\|u\|} u=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

Observe that \widehat{u}_{1} and \widehat{u}_{2} are linearly independent since they are orthogonal and non-zero. To see why this is the case, suppose that

$$
c_{1} \widehat{u}_{1}+c_{2} \widehat{u}_{2}=0 .
$$

Taking the inner product with \widehat{u}_{1}, we get that $c_{1}=0$; taking the inner product with \widehat{u}_{2}, we get that $c_{2}=0$. Hence the set $\left\{\widehat{u}_{1}, \widehat{u}_{2}\right\}$ is linearly independent.
Finally, since $\operatorname{dim}\left(\operatorname{span}\left\{v_{1}, v_{2}\right\}\right)=2$, it follows that $\left\{\widehat{u}_{1}, \widehat{u}_{2}\right\}$ also spans $\operatorname{span}\left\{v_{1}, v_{2}\right\}$. Hence, $\left\{\widehat{u}_{1}, \widehat{u}_{2}\right\}$ is a basis for $\operatorname{span}\left\{v_{1}, v_{2}\right\}$.
2. Let $W=\left\{\left.\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \in \mathbb{R}^{3} \right\rvert\, 3 x-2 y+z=0\right\}$. Find a non-zero vector v in \mathbb{R}^{3} which is orthogonal to every vector in W; that is, $v \neq \mathbf{0}$ and

$$
\langle v, w\rangle=0 \quad \text { for all } \quad w \in W
$$

Solution: We have seen that the set $B=\left\{\left(\begin{array}{r}1 \\ 0 \\ -3\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right)\right\}$ is a basis for W (see Problem 1 in Assignment \#11). We need to find a non-zero vector, $v=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$, which is orthogonal to both vectors in B; that is, the coordinates of v satisfy

$$
\left\{\begin{array}{l}
a-3 c=0 \tag{1}\\
b+2 c=0
\end{array}\right.
$$

Solving for the leading variables in system (1) and setting $c=t$, where t is an arbitrary parameter, we obtain the solutions

$$
\left\{\begin{align*}
a & =3 t \tag{2}\\
b & =-2 t \\
c & =t
\end{align*}\right.
$$

Since, we are looking for a non-zero vector which is orthogonal to W, we can take $t=1$ in (2) to get $v=\left(\begin{array}{r}3 \\ -2 \\ 1\end{array}\right)$.
3. Let $u_{1}, u_{2}, \ldots, u_{n}$ be unit vectors in \mathbb{R}^{n} which are mutually orthogonal; that is,

$$
\left\langle u_{i}, u_{j}\right\rangle=0 \quad \text { for } \quad i \neq j .
$$

Prove that the set $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ is a basis for \mathbb{R}^{n}, and that, for any $v \in \mathbb{R}^{n}$,

$$
v=\sum_{i=1}^{n}\left\langle v, u_{i}\right\rangle u_{i} .
$$

Solution: Since $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ has n vectors and $\operatorname{dim}\left(\mathbb{R}^{n}\right)=n$, it suffices to prove that the set is linearly independent. Thus, consider the equation

$$
c_{1} u_{1}+c_{2} u_{2}+\cdots+c_{n} u_{n}=\mathbf{0}
$$

Taking the dot product with u_{j}, for j in $\{1,2, \ldots, n\}$, on both sides, and using the bilinearity property of the Euclidean inner product, we get

$$
c_{1}\left\langle u_{1}, u_{j}\right\rangle+c_{2}\left\langle u_{2}, u_{j}+\cdots+c_{j}\left\langle u_{j}, u_{j}\right\rangle+\cdots+c_{n}\left\langle u_{n}, u_{j}\right\rangle=0,\right.
$$

which implies that $c_{j}=0$, since the u_{i} 's are mutually orthogonal and $\left\langle u_{j}, u_{j}\right\rangle=1$. Consequently,

$$
c_{1}=c_{2}=c_{3}=\cdots=c_{n}=0
$$

It then follows that $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ is linearly independent.
Next, since $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ is a basis for \mathbb{R}^{n}, given any vector v in \mathbb{R}^{n}, there exist scalars $c_{1}, c_{2}, \ldots, c_{n}$ such that

$$
v=c_{1} u_{2}+c_{2} u_{2}+\cdots+c_{n} u_{n}=\sum_{i=1}^{n} c_{i} u_{i} .
$$

Taking the dot product with u_{j} on both sides we get that

$$
\left\langle v, u_{j}\right\rangle=c_{j}
$$

since $\left\langle u_{i}, u_{j}\right\rangle=0$ when $j \neq i$ and $\left\langle u_{j}, u_{j}\right\rangle=\left\|u_{j}\right\|^{2}=1$ for all i and j in $\{1,2, \ldots, n\}$. Hence,

$$
v=\sum_{i=1}^{n}\left\langle v, u_{i}\right\rangle u_{i} .
$$

4. The Euclidean inner product of two vectors in \mathbb{R}^{n} is symmetric, bi-linear and positive definite; that is, for vectors v, v_{1}, v_{2} and w in \mathbb{R}^{n},
(i) $\langle v, w\rangle=\langle w, v\rangle$,
(ii) $\left\langle c_{1} v_{1}+c_{2} v_{2}, w\right\rangle=c_{1}\left\langle v_{1}, w\right\rangle+c_{2}\left\langle v_{2}, w\right\rangle$, and
(iii) $\langle v, v\rangle \geqslant 0$ for all $v \in \mathbb{R}^{n}$ and $\langle v, v\rangle=0$ if and only if v is the zero vector.

Use these properties of the the inner product in \mathbb{R}^{n} to derive the following properties of the norm $\|\cdot\|$ in \mathbb{R}^{n} :
(a) $\|v\| \geqslant 0$ for all $v \in \mathbb{R}^{n}$ and $\|v\|=0$ if and only if $v=\mathbf{0}$.

Solution: By the definition, $\|v\|=\sqrt{\langle v, v\rangle}$, of the norm and the positive definiteness of the Euclidean inner product, we see that $\|v\| \geqslant 0$ for all $v \in \mathbb{R}^{n}$. Furthermore, $\|v\|=0$ if and only if $v=\mathbf{0}$.
(b) For a scalar $c,\|c v\|=|c|\|v\|$.

Solution: Use the definition of the Euclidean norm and the bilinearity of the inner product to write $\|c v\|^{2}=\langle c v, c v\rangle=c^{2}\langle v, v\rangle$. Thus,

$$
\|c v\|^{2}=c^{2}\|v\|^{2}
$$

Taken square roots on both sides we get

$$
\|c v\|=\sqrt{c^{2}}\|v\|=|c|\|v\|
$$

5. The Cauchy-Schwarz inequality for any vectors v and w in \mathbb{R}^{n} states that

$$
|\langle v, w\rangle| \leqslant\|v\|\|w\| .
$$

Use this inequality to derive the triangle inequality: For any vectors v and w in \mathbb{R}^{n},

$$
\|v+w\| \leqslant\|v\|+\|w\|
$$

(Suggestion: Start with the expression $\|v+w\|^{2}$ and use the properties of the inner product to simplify it.)

Solution: Expand $\|v+w\|^{2}$ using the properties of the inner product to get

$$
\begin{aligned}
\|v+w\|^{2} & =\langle v+w, v+w\rangle \\
& =\langle v, v\rangle+\langle v, w\rangle+\langle w, v\rangle+\langle w, w\rangle \\
& =\|v\|^{2}+2\langle v, w\rangle+\|w\|^{2} \\
& \leqslant\|v\|^{2}+2|\langle v, w\rangle|+\|w\|^{2}
\end{aligned}
$$

It then follows by the Cauchy-Schwarz inequality that

$$
\|v+w\|^{2} \leqslant\|v\|^{2}+2\|v\|\|w\|+\|w\|^{2}=(\|v\|+\|w\|)^{2} .
$$

Taking square roots yields the triangle inequality

$$
\|v+w\| \leqslant\|v\|+\|w\|
$$

