Assignment \#13

Due on Wednesday, October 29, 2014
Read Section 3.1, on Vector Space Structure in $\mathbb{M}(m, n)$, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Background and Definitions

- (Transpose of a matrix). Given an $m \times n$ matrix

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)
$$

the transpose of A, denoted by A^{T}, is the $n \times m$ matrix given by

$$
A^{T}=\left(\begin{array}{cccc}
a_{11} & a_{21} & \cdots & a_{m 1} \\
a_{12} & a_{22} & \cdots & a_{m 2} \\
\vdots & \vdots & \vdots & \vdots \\
a_{1 n} & a_{2 n} & \cdots & a_{m n}
\end{array}\right) .
$$

More concisely, if $A=\left[a_{i j}\right]$, for $1 \leqslant i \leqslant m$ and $1 \leqslant j \leqslant n$, then

$$
A^{T}=\left[a_{j i}\right], \quad \text { for } 1 \leqslant i \leqslant m \text { and } 1 \leqslant j \leqslant n
$$

- (Symmetric matrices). A square matrix, $A \in \mathbb{M}(n, n)$, is said to be symmetric if $A^{T}=A$.
- (Diagonal matrices). A square matrix, $A=\left[a_{i j}\right] \in \mathbb{M}(n, n)$, is said to be a diagonal matrix if $a_{i j}=0$ for all $i \neq j$.

Do the following problems

1. Let $W=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathbb{M}(2,2) \right\rvert\, d=a\right.$ and $\left.c=-b\right\}$. Prove that W is a subspace of $\mathbb{M}(2,2)$.
2. Let W be as in Problem 1. Find a basis for W and compute $\operatorname{dim}(W)$.
3. Let $W=\left\{A \in \mathbb{M}(2,2) \mid A^{T}=A\right\}$; that is, W is the set of all 2×2 symmetric matrices. Prove that W is a subspace of $\mathbb{M}(2,2)$. Find a basis for W and compute its dimension.
4. Determine whether or not the set

$$
\left\{\left(\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right),\left(\begin{array}{cc}
-2 & 0 \\
3 & 0
\end{array}\right),\left(\begin{array}{cc}
1 & -3 \\
6 & -3
\end{array}\right),\left(\begin{array}{cc}
1 & 1 \\
-4 & 1
\end{array}\right)\right\}
$$

forms a basis for $\mathbb{M}(2,2)$.
5. Let $W=\{A \in \mathbb{M}(n, n) \mid A$ is a diagonal matrix $\}$; that is,

$$
A=\left[a_{i j}\right] \in W \text { iff } a_{i j}=0 \text { for all } i \neq j
$$

Prove that W is a subspace of $\mathbb{M}(n, n)$ and compute $\operatorname{dim}(W)$.

