Solutions to Assignment \#14

1. Let $\mathbb{C}(2,2)=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathbb{M}(2,2) \right\rvert\, d=a\right.$ and $\left.c=-b\right\}$. It was shown in Problem 1 in Assignment $\# 13$ that $\mathbb{C}(2,2)$ is a subspace of $\mathbb{M}(2,2)$.
(a) Prove that $\mathbb{C}(2,2)=\operatorname{span}\{I, J\}$, where

$$
I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \text { and } \quad J=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)
$$

Solution: Given any $A \in \mathbb{C}(2,2)$, write

$$
\begin{aligned}
A & =\left(\begin{array}{rr}
a & b \\
-b & a
\end{array}\right) \\
& =\left(\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right)+\left(\begin{array}{rr}
0 & b \\
-b & 0
\end{array}\right) \\
& =a\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+(-b)\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right) \\
& =a I+(-b) J
\end{aligned}
$$

which shows that $A \in \operatorname{span}\{I, J\}$. Thus,

$$
\begin{equation*}
\mathbb{C}(2,2) \subseteq \operatorname{span}\{I, J\} \tag{1}
\end{equation*}
$$

Next, since I and J are in in $\mathbb{C}(2,2)$, and $\mathbb{C}(2,2)$ is a subspace of $\mathbb{M}(2,2$,$) , it follows that$

$$
\begin{equation*}
\operatorname{span}\{I, J\} \subseteq \mathbb{C}(2,2) \tag{2}
\end{equation*}
$$

Combining (1) and (2) yields $\mathbb{C}(2,2)=\operatorname{span}\{I, J\}$.
(b) Observe that $J^{2}=J J=-I$ and compute J^{n}, where $n=1,2,3, \ldots$

Solution: Since matrix multiplication is associative, we can compute

$$
\begin{aligned}
J^{3} & =\left(J^{2}\right) J=(-I) J=-J, \\
J^{4} & =\left(J^{3}\right) J=(-J)(J)=-J^{2}=-(-I)=I, \\
J^{5} & =\left(J^{4}\right) J=(I)(J)=J,
\end{aligned}
$$

and so on. We therefore get the following pattern

$$
J^{n}=\left\{\begin{aligned}
I & \text { if } n=4 k \\
J & \text { if } n=4 k+1 \\
-I & \text { if } n=4 k+2 \\
-J & \text { if } n=4 k+3
\end{aligned}\right.
$$

for $k=1,2,3, \ldots$
2. Let $\mathbb{C}(2,2)$ be as in Problem 1.
(a) Prove that if Z_{1} and Z_{2} are two matrices in $\mathbb{C}(2,2)$, then $Z_{1} Z_{2} \in \mathbb{C}(2,2)$; that is, $\mathbb{C}(2,2)$ is closed under matrix multiplication.

Solution: Let $Z_{1}=a_{1} I+b_{1} J$ and $Z_{2}=a_{2} I+b_{2} J$; then, applying the distributive and associative properties of matrix algebra,

$$
\begin{aligned}
Z_{1} Z_{2} & =\left(a_{1} I+b_{1} J\right)\left(a_{2} I+b_{2} J\right) \\
& =a_{1} a_{2} I^{2}+a_{1} b_{2} I J+b_{1} a_{2} J I+b_{1} b_{2} J J \\
& =a_{1} a_{2} I+a_{1} b_{2} J+b_{1} a_{2} J+b_{1} b_{2} J^{2} \\
& =a_{1} a_{2} I+\left(a_{1} b_{2}+b_{1} a_{2}\right) J+b_{1} b_{2}(-I) \\
& =\left(a_{1} a_{2}-b_{1} b_{2}\right) I+\left(a_{1} b_{2}+b_{1} a_{2}\right) J,
\end{aligned}
$$

which shows that $Z_{1} Z_{2} \in \operatorname{span}\{I, J\}$ and therefore $Z_{1} Z_{2} \in \mathbb{C}(2,2)$.
(b) Let Z_{1} and Z_{2} be two matrices in $\mathbb{C}(2,2)$. Prove that $Z_{1} Z_{2}=Z_{2} Z_{1}$; that is, matrix multiplication in $\mathbb{C}(2,2)$ is commutative.

Solution: Let Z_{1} and Z_{2} be as in the solution to part (a) above; then, by the calculation done in that solution

$$
\begin{aligned}
Z_{1} Z_{2} & =\left(a_{1} a_{2}-b_{1} b_{2}\right) I+\left(a_{1} b_{2}+b_{1} a_{2}\right) J \\
& =\left(a_{2} a_{1}-b_{2} b_{1}\right) I+\left(b_{2} a_{1}+a_{2} b_{1}\right) J \\
& =\left(a_{2} a_{1}-b_{2} b_{1}\right) I+\left(a_{2} b_{1}+b_{2} a_{1}\right) J \\
& =Z_{2} Z_{1} .
\end{aligned}
$$

(c) Give the coordinates of Z_{1}, Z_{2} and $Z_{1} Z_{2}$ relative to the basis $\mathcal{B}=\{I, J\}$ of $\mathbb{C}(2,2)$.

Solution: Let Z_{1} and Z_{2} be as in the solution to part (a) above. Then,

$$
\left[Z_{1}\right]_{\mathcal{B}}=\binom{a_{1}}{b_{1}},\left[Z_{2}\right]_{\mathcal{B}}=\binom{a_{2}}{b_{2}} \quad \text { and } \quad\left[Z_{1} Z_{2}\right]_{\mathcal{B}}=\binom{a_{1} a_{2}-b_{1} b_{2}}{a_{1} b_{2}+b_{1} a_{2}}
$$

3. Let $\mathbb{C}(2,2)$ be as in Problem 1 .
(a) Let $A=\left(\begin{array}{rr}a & -b \\ b & a\end{array}\right)$, where $a^{2}+b^{2} \neq 0$. Prove that there exists a matrix Z in $\mathbb{C}(2,2)$ such that

$$
A Z=I
$$

Suggestion: Write $Z=\left(\begin{array}{rr}x & -y \\ y & x\end{array}\right)$, where x and y denote real numbers, compute $A Z$ and find x and y so that $A Z=I$. Consider separately the cases $a \neq 0$ and $a=0$. Observe that, since $a^{2}+b^{2} \neq 0$, if $a=0$, then $b \neq 0$.

Solution: Assume that $a^{2}+b^{2} \neq 0$ and look for $Z=\left(\begin{array}{rr}x & -y \\ y & x\end{array}\right)$, where x and y are unknown, such that $A Z=I$, where I is the 2×2 identity matrix; that is,

$$
\left(\begin{array}{rr}
a & -b \\
b & a
\end{array}\right)\left(\begin{array}{rr}
x & -y \\
y & x
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

or

$$
\left(\begin{array}{cc}
a x-b y & -(b x+a y) \\
b x+a y & a x-b y
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

This leads to a system of the two linear equations

$$
\left\{\begin{array}{l}
a x-b y=1 \tag{3}\\
b x+a y=0
\end{array}\right.
$$

We can solve the system in (3) by performing elementary row operations on the augmented matrix

$$
\left(\begin{array}{rr|r}
a & -b & 1 \tag{4}\\
b & a & 0
\end{array}\right)
$$

We first reduce the matrix in (4) for the case in which $a \neq 0$. We obtain that

$$
\left(\begin{array}{cc|c}
1 & 0 & a /\left(a^{2}+b^{2}\right) \tag{5}\\
0 & 1 & -b /\left(a^{2}+b^{2}\right)
\end{array}\right)
$$

where we have used the assumption that $a^{2}+b^{2} \neq 0$. From (5) we get that the system in (3) has the unique solution

$$
x=\frac{a}{a^{2}+b^{2}} \text { and } y=-\frac{b}{a^{2}+b^{2}} .
$$

It then follows that

$$
Z=\left(\begin{array}{cc}
\frac{a}{a^{2}+b^{2}} & \frac{b}{a^{2}+b^{2}} \\
-\frac{b}{a^{2}+b^{2}} & \frac{a}{a^{2}+b^{2}}
\end{array}\right)
$$

or

$$
Z=\frac{1}{a^{2}+b^{2}}\left(\begin{array}{rr}
a & b \tag{6}\\
-b & a
\end{array}\right) .
$$

Next, consider the case $a=0$. Since $a^{2}+b^{2} \neq 0$, it follows that $b \neq 0$. In this case, the augmented matrix in (4) becomes

$$
\left(\begin{array}{rr|r}
0 & -b & 1 \\
b & 0 & 0
\end{array}\right)
$$

which can be reduced to

$$
\left(\begin{array}{cc|c}
1 & 0 & 0 \\
0 & 1 & -1 / b
\end{array}\right)
$$

Thus,

$$
x=0 \text { and } y=-\frac{1}{b}
$$

Contently, if $a=0$ and $b \neq 0$, then

$$
Z=\left(\begin{array}{cc}
0 & 1 / b \\
-1 / b & 0
\end{array}\right)
$$

or

$$
Z=\frac{1}{b}\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Observe that this is the same matrix obtained from (6) by setting $a=0$. Thus, in all cases, Z is given by (6).
(b) Put $\mathcal{B}=\{I, J\}$ and find the coordinates of A and Z relative to \mathcal{B}.

Solution: If $A=a I+b J$ then

$$
[A]_{\mathcal{B}}=\binom{a}{b}
$$

If $a^{2}+b^{2} \neq 0$, then $Z=x I+y J$ such that $A Z=I$ is given by

$$
[Z]_{\mathcal{B}}=\frac{1}{a^{2}+b^{2}}\binom{a}{-b} .
$$

4. Consider the system of linear equations

$$
\left\{\begin{array}{rlr}
2 x_{1}-x_{2}-3 x_{3} & = & 4 \tag{7}\\
x_{1}+x_{2}+x_{3} & = & -2 \\
x_{1}+2 x_{2}+3 x_{3} & = & 5
\end{array}\right.
$$

(a) Find a 3×3 matrix A and 3×1 matrices x and b (that is, x and y are vectors in \mathbb{R}^{3}) so that the system in (7) can be expressed as the matrix equation

$$
A x=b
$$

Answer:

$$
A=\left(\begin{array}{rrr}
2 & -1 & -3 \\
1 & 1 & 1 \\
1 & 2 & 3
\end{array}\right), x=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \quad \text { and } \quad b=\left(\begin{array}{r}
4 \\
-2 \\
5
\end{array}\right) .
$$

(b) Let C denote the matrix $\left(\begin{array}{rrr}1 & -3 & 2 \\ -2 & 9 & -5 \\ 1 & -5 & 3\end{array}\right)$, and compute the products $C A, A C$ and $C b$.

Answer:

$$
A C=C A=I,
$$

where I denotes the 3×3 identity matrix, and

$$
C b=\left(\begin{array}{r}
20 \\
-51 \\
29
\end{array}\right) \text {. }
$$

(c) Prove that $x=C b$ is the unique solution to the system in (7).

Solution: Using the fact that $A C=I$ and the associativity of matrix multiplication, we see that

$$
A(C b)=(A C) b=I b=b
$$

so that $x=C b$ is a solution to the equation $A x=b$.
To see that $A x=b$ has a unique solution, assume that there are two solutions, x and y, so that

$$
A x=A y
$$

Subtracting $A y$ on both sides and using the distributive property we get that

$$
A(x-y)=\mathbf{0}
$$

Multiplying by C on both sides we get that

$$
C(A(x-y))=C \mathbf{0}
$$

or

$$
(C A)(x-y)=\mathbf{0}
$$

or

$$
I(x-y)=\mathbf{0}
$$

or

$$
x-y=\mathbf{0}
$$

from which we get that $x=y$.
5. Find matrices A and B in $\mathbb{M}(2,2)$ that have no entries equal to 0 , but such that

$$
A B=O
$$

where O denotes the 2×2 zero matrix.
Explain why, in this case, it is impossible to find 2×2 matrix C such that $C A=I$, where I denotes the 2×2 identity matrix.

Solution: Let $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$, and $B=\left(\begin{array}{rr}1 & 1 \\ -1 & -1\end{array}\right)$. Then,

$$
A B=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\left(\begin{array}{rr}
1 & 1 \\
-1 & -1
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .
$$

If there was a 2×2 matrix C such that $C A=I$, then, multiplying on both sides of

$$
A B=O
$$

by C we get that

$$
C(A B)=C O,
$$

or

$$
(C A) B=O
$$

or

$$
I B=O
$$

which implies that $B=O$; but B is not the zero matrix. Consequently, there is no 2×2 matrix C such that $C A=I$.

