Solutions to Assignment \#15

1. Let A be an $m \times n$ matrix, and $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ denote the standard basis in \mathbb{R}^{n}.
(a) Prove that $A e_{j}$ is the $j^{\text {th }}$ column of the matrix A.

Solution: Write $A=\left(\begin{array}{c}R_{1} \\ R_{2} \\ \vdots \\ R_{m}\end{array}\right)$, where $R_{1}, R_{2}, \ldots, R_{m}$ are the
rows of A, and $e_{j}=\left(\begin{array}{c}\delta_{1 j} \\ \delta_{2 j} \\ \vdots \\ \delta_{n j}\end{array}\right)$, where $\delta_{k j}=1$ if $k=j$, but $\delta_{k j}=0$ if $k \neq j$. Then,

$$
A e_{j}=\left(\begin{array}{c}
R_{1} e_{j} \\
R_{2} e_{j} \\
\vdots \\
R_{m} e_{j}
\end{array}\right)
$$

where, for each $i=1,2, \ldots, m$,

$$
R_{i} e_{j}=\sum_{k=1}^{n} a_{i k} \delta_{k j}=a_{i j}
$$

Thus,

$$
A e_{j}=\left(\begin{array}{c}
a_{1 j} \\
a_{2 j} \\
\vdots \\
a_{m j}
\end{array}\right)
$$

which is the $j^{\text {th }}$ column of the matrix A.
(b) Use your result from part (a) to prove that $A I=A$, where I denotes the $n \times n$ identity matrix.

Solution: Observe that the identity matrix in $\mathbb{M}(n, n)$ can be written as

$$
I=\left[\begin{array}{llll}
e_{1} & e_{2} & \cdots & e_{n}
\end{array}\right] .
$$

Then,

$$
A I=\left[\begin{array}{llll}
A e_{1} & A e_{2} & \cdots & A e_{n}
\end{array}\right]=A
$$

since $A e_{j}$ is the $j^{\text {th }}$ column of A for each $j=1,2, \ldots, n$.
2. Recall that the null space of a matrix $A \in \mathbb{M}(m, n)$, denoted by N_{A}, is the space of solutions to the equation $A x=0$; that is, $N_{A}=\left\{v \in \mathbb{R}^{n} \mid A v=0\right\}$. Prove that $v \in N_{A}$ if and only if v is orthogonal to the rows of A.

Solution: Write $A=\left(\begin{array}{c}R_{1} \\ R_{2} \\ \vdots \\ R_{m}\end{array}\right)$, where $R_{1}, R_{2}, \ldots, R_{m}$ are the rows
of A. Observe that for any vector $v \in \mathbb{R}^{n}$,

$$
A v=\left(\begin{array}{c}
R_{1} v \\
R_{2} v \\
\vdots \\
R_{m} v
\end{array}\right)
$$

where, for each $i=1,2, \ldots, m$,

$$
R_{i} v=\left\langle R_{i}^{T}, v\right\rangle ;
$$

that is, $R_{i} v$ is the Euclidean inner product of the vectors R_{i}^{T} and v. It then follows that $v \in N_{A}$ if and only if

$$
\left\langle R_{i}^{T}, v\right\rangle=0 \quad \text { for all } i=1,2, \ldots, m
$$

that is, v is orthogonal to the rows of A.
3. Recall that the transpose of an $m \times n$ matrix, $A=\left[a_{i j}\right]$, is the $n \times m$ matrix A^{T} given by $A^{T}=\left[a_{j i}\right]$, for $1 \leqslant i \leqslant m$ and $1 \leqslant j \leqslant n$.
Let $A \in \mathbb{M}(m, n)$ and $B \in \mathbb{M}(n, k)$. Prove that $(A B)^{T}=B^{T} A^{T}$.
Proof: Write $A=\left[a_{i j}\right] \in \mathbb{M}(m, n)$ and $B=\left[b_{j \ell}\right] \in \mathbb{M}(n, k)$, where $1 \leqslant i \leqslant m$, $1 \leqslant j \leqslant n$ and $1 \leqslant \ell \leqslant k$. Put $A^{T}=\left[a_{j i}^{\prime}\right]$ and $B^{T}=\left[b_{\ell j}^{\prime}\right]$, where $a_{j i}^{\prime}=a_{i j}$ and $b_{\ell j}^{\prime}=b_{\ell j}$.
Next, compute $A B=\left[d_{i \ell}\right]$, where $d_{i \ell}=\sum_{j=1}^{n} a_{i j} b_{j \ell}$, for $1 \leqslant i \leqslant m$ and $1 \leqslant \ell \leqslant k$.
Consequently, $(A B)^{T}=\left[d_{\ell i}^{\prime}\right]$, where $d_{\ell i}^{\prime}=d_{i \ell}$. Note that

$$
d_{\ell i}^{\prime}=d_{i \ell}=\sum_{j=1}^{n} a_{i j} b_{j \ell}=\sum_{j=1}^{n} a_{j i}^{\prime} b_{\ell j}^{\prime}=\sum_{j=1}^{n} b_{\ell j}^{\prime} a_{j i}^{\prime}
$$

which shows that $d_{\ell i}^{\prime}$, for $1 \leqslant \ell \leqslant k$ and $1 \leqslant i \leqslant m$, are the entries in the matrix product $B^{T} A^{T}$; that is,

$$
(A B)^{T}=B^{T} A^{T}
$$

which was to be shown.
4. Consider any diagonal matrix $A=\left(\begin{array}{ccc}d_{1} & 0 & 0 \\ 0 & d_{2} & 0 \\ 0 & 0 & d_{3}\end{array}\right) \in \mathbb{M}(3,3)$.

Prove that there exist constants c_{o}, c_{1}, c_{2} and c_{3} such that

$$
c_{o} I+c_{1} A+c_{2} A^{2}+c_{2} A^{3}=O,
$$

where I is the identity matrix in $\mathbb{M}(3,3)$ and O denotes the 3×3 zero-matrix. In other words, there exists a polynomial, $p(x)=c_{o}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}$, of degree 3 , such that $p(A)=O$.

Proof: Let \mathcal{W} denote the set of all diagonal 3×3 matrices. Then, \mathcal{W} is a subspace of $\mathbb{M}(3,3)$; it fact,

$$
\mathcal{W}=\operatorname{span}\left\{\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\right\}
$$

and consequently $\operatorname{dim}(\mathcal{W})=3$.
Observe also that the matrices I, A, A^{2} and A^{3} are in \mathcal{W}. Hence, since \mathcal{W} has dimension 3, it follows that the set

$$
\left\{I, A, A^{2}, A^{3}\right\}
$$

is linearly independent. Therefore, there exist constants c_{o}, c_{1}, c_{2} and c_{3} such that

$$
c_{o} I+c_{1} A+c_{2} A^{2}+c_{2} A^{3}=O,
$$

which was to be shown.
5. Let $A=\left(\begin{array}{rrr}1 & 2 & 1 \\ 0 & -2 & 3 \\ 4 & 1 & 2\end{array}\right)$.
(a) Compute A^{2} and A^{3}.

Answer: Compute

$$
A^{2}=\left(\begin{array}{rrr}
5 & -1 & 9 \\
12 & 7 & 0 \\
12 & 8 & 11
\end{array}\right)
$$

and

$$
A^{3}=\left(\begin{array}{lll}
41 & 21 & 20 \\
12 & 10 & 33 \\
56 & 19 & 58
\end{array}\right)
$$

(b) Verify that $A^{3}-A^{2}-11 A-25 I=O$, where I is the identity matrix in $\mathbb{M}(3,3)$ and O denotes the 3×3 zero-matrix.

Solution: Compute $A^{3}-A^{2}-11 A-25 I$ to get the 3×3 zeromatrix.
(c) Use the result of part (b) above to find a matrix $B \in \mathbb{M}(3,3)$ such that $A B=I$.

Solution: Start with the equation

$$
A^{3}-A^{2}-11 A-25 I=O,
$$

add $25 I$ on both sides and write $A=A I$ to get

$$
A^{3}-A^{2}-11 A I=25 I
$$

Applying the distributive property on the left-hand side to factor out A we obtain

$$
A\left(A^{2}-A-112 I\right)=25 I
$$

Thus, multiplying on both sides by $1 / 25$,

$$
A\left[\frac{1}{25}\left(A^{2}-A-11 I\right)\right]=I
$$

Thus, we see that

$$
B=\frac{1}{25}\left(A^{2}-A-11 I\right)
$$

where

$$
A^{2}-A 2-11 I=\left(\begin{array}{rrr}
-7 & -3 & 8 \\
12 & -2 & -3 \\
8 & 7 & -2
\end{array}\right)
$$

It then follows that

$$
B=\frac{1}{25}\left(\begin{array}{rrr}
-7 & -3 & 8 \\
12 & -2 & -3 \\
8 & 7 & -2
\end{array}\right)
$$

or

$$
B=\left(\begin{array}{ccc}
-7 / 25 & -3 / 25 & 8 / 25 \\
12 / 25 & -2 / 25 & -3 / 25 \\
8 / 25 & 7 / 25 & -2 / 25
\end{array}\right)
$$

