Solutions to Assignment #15

- 1. Let A be an $m \times n$ matrix, and $\{e_1, e_2, \ldots, e_n\}$ denote the standard basis in \mathbb{R}^n .
 - (a) Prove that Ae_j is the j^{th} column of the matrix A.

Solution: Write
$$A = \begin{pmatrix} R_1 \\ R_2 \\ \vdots \\ R_m \end{pmatrix}$$
, where R_1, R_2, \dots, R_m are the rows of A , and $e_j = \begin{pmatrix} \delta_{1j} \\ \delta_{2j} \\ \vdots \\ \delta_{nj} \end{pmatrix}$, where $\delta_{kj} = 1$ if $k = j$, but $\delta_{kj} = 0$

if
$$k \neq j$$
. Then,

$$Ae_j = \begin{pmatrix} R_1 e_j \\ R_2 e_j \\ \vdots \\ R_m e_j \end{pmatrix},$$

where, for each i = 1, 2, ..., m,

$$R_i e_j = \sum_{k=1}^n a_{ik} \delta_{kj} = a_{ij}.$$

Thus,

$$Ae_j = \begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{pmatrix},$$

which is the j^{th} column of the matrix A.

(b) Use your result from part (a) to prove that AI = A, where I denotes the $n \times n$ identity matrix.

Solution: Observe that the identity matrix in $\mathbb{M}(n, n)$ can be written as

$$I = \begin{bmatrix} e_1 & e_2 & \cdots & e_n \end{bmatrix}.$$

Then,

$$AI = \begin{bmatrix} Ae_1 & Ae_2 & \cdots & Ae_n \end{bmatrix} = A,$$

since Ae_j is the jth column of A for each j = 1, 2, ..., n.

Math 60. Rumbos

2. Recall that the null space of a matrix $A \in \mathbb{M}(m, n)$, denoted by N_A , is the space of solutions to the equation $Ax = \mathbf{0}$; that is, $N_A = \{v \in \mathbb{R}^n \mid Av = \mathbf{0}\}$. Prove that $v \in N_A$ if and only if v is orthogonal to the rows of A.

Solution: Write
$$A = \begin{pmatrix} R_1 \\ R_2 \\ \vdots \\ R_m \end{pmatrix}$$
, where R_1, R_2, \dots, R_m are the rows

of A. Observe that for any vector $v \in \mathbb{R}^n$,

$$Av = \begin{pmatrix} R_1 v \\ R_2 v \\ \vdots \\ R_m v \end{pmatrix},$$

where, for each $i = 1, 2, \ldots, m$,

$$R_i v = \langle R_i^T, v \rangle;$$

that is, $R_i v$ is the Euclidean inner product of the vectors R_i^T and v. It then follows that $v \in N_A$ if and only if

$$\langle R_i^T, v \rangle = 0$$
 for all $i = 1, 2, \dots, m;$

that is, v is orthogonal to the rows of A.

3. Recall that the transpose of an $m \times n$ matrix, $A = [a_{ij}]$, is the $n \times m$ matrix A^T given by $A^T = [a_{ji}]$, for $1 \leq i \leq m$ and $1 \leq j \leq n$. Let $A \in \mathbb{M}(m, n)$ and $B \in \mathbb{M}(n, k)$. Prove that $(AB)^T = B^T A^T$.

Proof: Write $A = [a_{ij}] \in \mathbb{M}(m, n)$ and $B = [b_{j\ell}] \in \mathbb{M}(n, k)$, where $1 \leq i \leq m$, $1 \leq j \leq n$ and $1 \leq \ell \leq k$. Put $A^T = [a'_{ji}]$ and $B^T = [b'_{\ell j}]$, where $a'_{ji} = a_{ij}$ and $b'_{\ell j} = b_{\ell j}$.

Next, compute $AB = [d_{i\ell}]$, where $d_{i\ell} = \sum_{j=1}^{n} a_{ij} b_{j\ell}$, for $1 \leq i \leq m$ and $1 \leq \ell \leq k$. Consequently, $(AB)^T = [d'_{\ell i}]$, where $d'_{\ell i} = d_{i\ell}$. Note that

$$d'_{\ell i} = d_{i\ell} = \sum_{j=1}^{n} a_{ij} b_{j\ell} = \sum_{j=1}^{n} a'_{ji} b'_{\ell j} = \sum_{j=1}^{n} b'_{\ell j} a'_{ji},$$

which shows that $d'_{\ell i}$, for $1 \leq \ell \leq k$ and $1 \leq i \leq m$, are the entries in the matrix product $B^T A^T$; that is,

$$(AB)^T = B^T A^T$$

which was to be shown.

4. Consider any diagonal matrix $A = \begin{pmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{pmatrix} \in \mathbb{M}(3,3).$

Prove that there exist constants c_o , c_1 , c_2 and c_3 such that

$$c_o I + c_1 A + c_2 A^2 + c_2 A^3 = O,$$

where I is the identity matrix in $\mathbb{M}(3,3)$ and O denotes the 3×3 zero-matrix. In other words, there exists a polynomial, $p(x) = c_o + c_1 x + c_2 x^2 + c_3 x^3$, of degree 3, such that p(A) = O.

Proof: Let \mathcal{W} denote the set of all diagonal 3×3 matrices. Then, \mathcal{W} is a subspace of $\mathbb{M}(3,3)$; it fact,

$$\mathcal{W} = \operatorname{span} \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\},\$$

and consequently $\dim(\mathcal{W}) = 3$.

Observe also that the matrices I, A, A^2 and A^3 are in \mathcal{W} . Hence, since \mathcal{W} has dimension 3, it follows that the set

$$\{I, A, A^2, A^3\}$$

is linearly independent. Therefore, there exist constants $c_o\;,\,c_1\;,\,c_2$ and c_3 such that

$$c_o I + c_1 A + c_2 A^2 + c_2 A^3 = O,$$

which was to be shown.

- 5. Let $A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & -2 & 3 \\ 4 & 1 & 2 \end{pmatrix}$.
 - (a) Compute A^2 and A^3 .

and

Answer: Compute

$$A^{2} = \begin{pmatrix} 5 & -1 & 9 \\ 12 & 7 & 0 \\ 12 & 8 & 11 \end{pmatrix},$$
$$A^{3} = \begin{pmatrix} 41 & 21 & 20 \\ 12 & 10 & 33 \\ 56 & 19 & 58 \end{pmatrix},$$

(b) Verify that $A^3 - A^2 - 11A - 25I = O$, where I is the identity matrix in $\mathbb{M}(3,3)$ and O denotes the 3×3 zero-matrix.

Solution: Compute $A^3 - A^2 - 11A - 25I$ to get the 3×3 zeromatrix.

(c) Use the result of part (b) above to find a matrix $B \in \mathbb{M}(3,3)$ such that AB = I.

Solution: Start with the equation

$$A^3 - A^2 - 11A - 25I = O,$$

add 25*I* on both sides and write A = AI to get

 $A^3 - A^2 - 11AI = 25I.$

Applying the distributive property on the left–hand side to factor out ${\cal A}$ we obtain

$$A(A^2 - A - 112I) = 25I.$$

Thus, multiplying on both sides by 1/25,

$$A\left[\frac{1}{25}(A^2 - A - 11I)\right] = I.$$

Thus, we see that

$$B = \frac{1}{25}(A^2 - A - 11I),$$

where

$$A^{2} - A2 - 11I = \begin{pmatrix} -7 & -3 & 8\\ 12 & -2 & -3\\ 8 & 7 & -2 \end{pmatrix}.$$

It then follows that

$$B = \frac{1}{25} \begin{pmatrix} -7 & -3 & 8\\ 12 & -2 & -3\\ 8 & 7 & -2 \end{pmatrix},$$

or

$$B = \begin{pmatrix} -7/25 & -3/25 & 8/25\\ 12/25 & -2/25 & -3/25\\ 8/25 & 7/25 & -2/25 \end{pmatrix},$$

_		
_	_	