Assignment #16

Due on Friday, November 7, 2014

Read Section 4.1, on *Vector Valued Functions on Euclidean Space*, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 4.2 on *Linear Functions* in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 2.1 on *Linear Transformations* in Damiano and Little (pp. 63–71)

Read Section 2.2 on *Linear Transformations between Finite Dimensional Vector Spaces* in Damiano and Little (pp. 73–81)

Background and Definitions

Linear Functions. A function $T \colon \mathbb{R}^n \to \mathbb{R}^m$ is said to be **linear** if

- (i) T(cv) = cT(v) for all scalars c and all $v \in \mathbb{R}^n$, and
- (ii) T(u+v) = T(u) + T(v) for all $u, v \in \mathbb{R}^n$.

Figure 1: Reflection on the line y = x

Do the following problems

1. Define $T: \mathbb{R}^2 \to \mathbb{R}^2$ as follows: For each $v \in \mathbb{R}^2$, T(v) is the reflection of the point determined by the coordinates of v, relative to the standard basis in \mathbb{R}^2 , on the line y = x in \mathbb{R}^2 . That is, T(v) determines a point along a line through the point determined by v which is perpendicular to the line y = x, and the distance from v to the line y = x is the same as the distance from T(v) to the line y = x (see Figure 1).

Prove that T is a linear function.

Math 60. Rumbos

Fall 2014 2

- 2. Prove that if $T: \mathbb{R}^n \to \mathbb{R}^m$ is linear, then $T(\mathbf{0}) = \mathbf{0}$, where the first $\mathbf{0}$ denotes the zero-vector in \mathbb{R}^n and the second $\mathbf{0}$ denotes the zero-vector in \mathbb{R}^m .
- 3. Suppose that $T: \mathbb{R}^n \to \mathbb{R}^m$ is linear and define

$$\mathcal{N}_T = \{ v \in \mathbb{R}^n \mid T(v) = \mathbf{0} \},\$$

where **0** denotes the zero-vector in \mathbb{R}^m .

Prove that \mathcal{N}_T is a subspace of \mathbb{R}^n .

Note: \mathcal{N}_T is called the **null space** of the linear function T.

4. Suppose that $T \colon \mathbb{R}^n \to \mathbb{R}^m$ is linear and define

$$\mathcal{I}_T = \{ w \in \mathbb{R}^m \mid w = T(v) \text{ for some } v \in \mathbb{R}^n \}.$$

Prove that \mathcal{I}_T is a subspace of \mathbb{R}^m .

Note: The set \mathcal{I}_T is called the **image** of the function T. It is also denoted by $T(\mathbb{R}^n)$; thus,

$$T(\mathbb{R}^n) = \{ w \in \mathbb{R}^m \mid w = T(v) \text{ for some } v \in \mathbb{R}^n \}.$$

5. Fix $u \in \mathbb{R}^n$ and define $f : \mathbb{R}^n \to \mathbb{R}$ by

$$f(v) = \langle u, v \rangle$$
 for all $v \in \mathbb{R}^n$.

- (a) Prove that f is a linear function.
- (b) Let \mathcal{N}_f denote the null space of f; that is,

$$\mathcal{N}_f = \{ v \in \mathbb{R}^n \mid \langle u, v \rangle = 0 \}.$$

Find the dimension of \mathcal{N}_f for each of the cases: $u = \mathbf{0}$ and $u \neq \mathbf{0}$.