Assignment \#16

Due on Friday, November 7, 2014
Read Section 4.1, on Vector Valued Functions on Euclidean Space, in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 4.2 on Linear Functions in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 2.1 on Linear Transformations in Damiano and Little (pp. 63-71)
Read Section 2.2 on Linear Transformations between Finite Dimensional Vector Spaces in Damiano and Little (pp. 73-81)

Background and Definitions

Linear Functions. A function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is said to be linear if
(i) $T(c v)=c T(v)$ for all scalars c and all $v \in \mathbb{R}^{n}$, and
(ii) $T(u+v)=T(u)+T(v)$ for all $u, v \in \mathbb{R}^{n}$.

Figure 1: Reflection on the line $y=x$
Do the following problems

1. Define $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ as follows: For each $v \in \mathbb{R}^{2}, T(v)$ is the reflection of the point determined by the coordinates of v, relative to the standard basis in \mathbb{R}^{2}, on the line $y=x$ in \mathbb{R}^{2}. That is, $T(v)$ determines a point along a line through the point determined by v which is perpendicular to the line $y=x$, and the distance from v to the line $y=x$ is the same as the distance from $T(v)$ to the line $y=x$ (see Figure 1).
Prove that T is a linear function.
2. Prove that if $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear, then $T(\mathbf{0})=\mathbf{0}$, where the first $\mathbf{0}$ denotes the zero-vector in \mathbb{R}^{n} and the second $\mathbf{0}$ denotes the zero-vector in \mathbb{R}^{m}.
3. Suppose that $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear and define

$$
\mathcal{N}_{T}=\left\{v \in \mathbb{R}^{n} \mid T(v)=\mathbf{0}\right\}
$$

where $\mathbf{0}$ denotes the zero-vector in \mathbb{R}^{m}.
Prove that \mathcal{N}_{T} is a subspace of \mathbb{R}^{n}.
Note: \mathcal{N}_{T} is called the null space of the linear function T.
4. Suppose that $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear and define

$$
\mathcal{I}_{T}=\left\{w \in \mathbb{R}^{m} \mid w=T(v) \text { for some } v \in \mathbb{R}^{n}\right\}
$$

Prove that \mathcal{I}_{T} is a subspace of \mathbb{R}^{m}.
Note: The set \mathcal{I}_{T} is called the image of the function T. It is also denoted by $T\left(\mathbb{R}^{n}\right)$; thus,

$$
T\left(\mathbb{R}^{n}\right)=\left\{w \in \mathbb{R}^{m} \mid w=T(v) \text { for some } v \in \mathbb{R}^{n}\right\}
$$

5. Fix $u \in \mathbb{R}^{n}$ and define $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
f(v)=\langle u, v\rangle \quad \text { for all } v \in \mathbb{R}^{n} .
$$

(a) Prove that f is a linear function.
(b) Let \mathcal{N}_{f} denote the null space of f; that is,

$$
\mathcal{N}_{f}=\left\{v \in \mathbb{R}^{n} \mid\langle u, v\rangle=0\right\}
$$

Find the dimension of \mathcal{N}_{f} for each of the cases: $u=\mathbf{0}$ and $u \neq \mathbf{0}$.

