Solutions to Assignment \#16

1. Define $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ as follows: For each $v \in \mathbb{R}^{2}, T(v)$ is the reflection of the point determined by the coordinates of v, relative to the standard basis in \mathbb{R}^{2}, on the line $y=x$ in \mathbb{R}^{2}. That is, $T(v)$ determines a point along a line through the point determined by v which is perpendicular to the line $y=x$, and the distance from v to the line $y=x$ is the same as the distance from $T(v)$ to the line $y=x$ (see Figure 1).

Figure 1: Reflection on the line $y=x$
Prove that T is a linear function.
Solution: If $\binom{x}{y}$ denote the coordinates of v relative to the standard basis in \mathbb{R}^{2}, then

$$
T\binom{x}{y}=\binom{y}{x}
$$

which can be written as

$$
T\binom{x}{y}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{x}{y}
$$

and this shows that T is linear since T is multiplication by the matrix

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

2. Prove that if $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear, then $T(\mathbf{0})=\mathbf{0}$, where the first $\mathbf{0}$ denotes the zero-vector in \mathbb{R}^{n} and the second $\mathbf{0}$ denotes the zero-vector in \mathbb{R}^{m}.

Proof: Start with $\mathbf{0}+\mathbf{0}=\mathbf{0}$ and apply the transformation T on both sides to get

$$
T(\mathbf{0}+\mathbf{0})=T(\mathbf{0})
$$

or

$$
T(\mathbf{0})+T(\mathbf{0})=T(\mathbf{0})
$$

where we have used the linearity of T on the left-hand side of the equation. Thus, adding $-T(\mathbf{0})$ to bout sides of the equation yields

$$
T(\mathbf{0})=\mathbf{0}
$$

3. Suppose that $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear and define

$$
\mathcal{N}_{T}=\left\{v \in \mathbb{R}^{n} \mid T(v)=\mathbf{0}\right\}
$$

where $\mathbf{0}$ denotes the zero-vector in \mathbb{R}^{m}.
Prove that \mathcal{N}_{T} is a subspace of \mathbb{R}^{n}.
Note: \mathcal{N}_{T} is called the null space of the linear function T.
Solution: By the result of Problem 2, $T(\mathbf{0})=\mathbf{0}$, which shows that $\mathbf{0} \in \mathcal{N}_{T}$ and therefore \mathcal{N}_{T} is not empty.
Next, we show that \mathcal{N}_{T} is closed under the vector space operations in \mathbb{R}^{n}.
Let $v \in \mathcal{N}_{T}$; then, $T(v)=\mathbf{0}$ and therefore

$$
T(c v)=c T(v)=c \mathbf{0}=\mathbf{0} .
$$

Thus, $c v \in \mathcal{N}_{T}$. This shows closure under scalar multiplication for \mathcal{N}_{T}.
Next, let $v, w \in \mathcal{N}_{T}$; then $T(v)=\mathbf{0}$ and $T(W)=\mathbf{0}$, so that

$$
T(v+w)=T(v)+T(w)=\mathbf{0}+\mathbf{0}=\mathbf{0}
$$

which shows that $v+w \in \mathcal{N}_{T}$ and therefore \mathcal{N}_{T} is closed under vector addition.
4. Suppose that $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear and define

$$
\mathcal{I}_{T}=\left\{w \in \mathbb{R}^{m} \mid w=T(v) \text { for some } v \in \mathbb{R}^{n}\right\}
$$

Prove that \mathcal{I}_{T} is a subspace of \mathbb{R}^{m}.
Note: The set \mathcal{I}_{T} is called the image of the function T. It is also denoted by $T\left(\mathbb{R}^{n}\right)$; thus,

$$
T\left(\mathbb{R}^{n}\right)=\left\{w \in \mathbb{R}^{m} \mid w=T(v) \text { for some } v \in \mathbb{R}^{n}\right\}
$$

Solution: Using again the result of Problem 2 we see that $T(\mathbf{0})=\mathbf{0}$ which shows that $\mathbf{0} \in \mathcal{I}_{T}$. Thus, \mathcal{I}_{T} is nonempty.
We next verify the closure properties.
Suppose that $w \in \mathcal{I}_{T}$; then, there exists $v \in \mathbb{R}$ such that

$$
w=T(v)
$$

Multiplying by $c \in \mathbb{R}$ and using the linearity of T we obtain that

$$
c w=c T(v)=T(c v)
$$

which shows that $c w \in \mathcal{I}_{T}$ and therefore \mathcal{I}_{T} is closed under scalar multiplication.
Next, let $w_{1}, w_{2} \in \mathcal{I}_{T}$; then, there exist $v_{1}, v_{2} \in \mathbb{R}$ such that

$$
w_{1}=T\left(v_{1}\right) \quad \text { and } \quad w_{2}=T\left(v_{2}\right)
$$

We then get that

$$
w_{1}+w_{2}=T\left(v_{1}\right)+T\left(v_{2}\right)=T\left(v_{1}+v_{2}\right)
$$

where we have used the linearity of T. This shows that $w_{1}+w_{2} \in \mathcal{I}_{T}$ and therefore \mathcal{I}_{T} is closed under vector addition.
5. Fix $u \in \mathbb{R}^{n}$ and define $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
f(v)=\langle u, v\rangle \quad \text { for all } v \in \mathbb{R}^{n} .
$$

(a) Prove that f is a linear function.

Solution: The linearity of f follows by the bi-linearity of the Euclidean inner-product:

$$
\begin{equation*}
\langle u, c v+d w\rangle=c\langle u, v\rangle+d\langle u, w\rangle . \tag{1}
\end{equation*}
$$

Taking $d=0$ in (1) yields

$$
f(c v)=c f(v)
$$

for all scalars c and vectors $v \in \mathbb{R}^{n}$, and taking $c=d=1$ in (1) yields

$$
f(v+w)=f(v)+f(w)
$$

for all $v, w \in \mathbb{R}^{n}$.
(b) Let \mathcal{N}_{f} denote the null space of f; that is,

$$
\mathcal{N}_{f}=\left\{v \in \mathbb{R}^{n} \mid\langle u, v\rangle=0\right\} .
$$

Find the dimension of \mathcal{N}_{f} for each of the cases: $u=\mathbf{0}$ and $u \neq \mathbf{0}$.
Solution: Suppose first that $u=0$. Then, $\mathcal{N}_{f}=\mathbb{R}^{n}$ since $\langle\mathbf{0}, v\rangle=0$ for all $v \in \mathbb{R}^{n}$. Thus, in this case,

$$
\operatorname{dim}\left(\mathcal{N}_{f}\right)=n
$$

Next, suppose that $u \neq \mathbf{0}$. Let $\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ denote a basis for \mathcal{N}_{f} so that $k=\operatorname{dim}\left(\mathcal{N}_{f}\right)$. Observe that, for any $v \in \mathbb{R}^{n}$, the vector

$$
v-\frac{\langle u, v\rangle}{\|u\|^{2}} u
$$

is in \mathcal{N}_{f}. To see why this is the case, compute

$$
\begin{aligned}
\left\langle u, v-\frac{\langle u, v\rangle}{\|u\|^{2}} u\right\rangle & =\langle u, v\rangle-\frac{\langle u, v\rangle}{\|u\|^{2}}\langle u, u\rangle \\
& =\langle u, v\rangle-\frac{\langle u, v\rangle}{\|u\|^{2}}\|u\|^{2} \\
& =\langle u, v\rangle-\langle u, v\rangle \\
& =0 .
\end{aligned}
$$

It then follows that the vector $v-\frac{\langle u, v\rangle}{\|u\|^{2}} u$ is a linear combination of the vectors in $\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$; that is,

$$
v-\frac{\langle u, v\rangle}{\|u\|^{2}} u=c_{1} w_{1}+c_{2} w_{2}+\cdots+c_{k} w_{k}
$$

so that

$$
v=\frac{\langle u, v\rangle}{\|u\|^{2}} u+c_{1} w_{1}+c_{2} w_{2}+\cdots+c_{k} w_{k}
$$

Hence,

$$
\mathbb{R}^{n}=\operatorname{span}\left\{u, w_{1}, w_{2}, \ldots, w_{k}\right\}
$$

Next, we see that the set $\left\{u, w_{1}, w_{2}, \ldots, w_{k}\right\}$ is linearly independent. To show this, let $d, c_{1}, c_{2}, \ldots, c_{k}$ be any solution of the vector equation

$$
\begin{equation*}
d u+c_{1} w_{1}+c_{2} w_{2}+\cdots+c_{k} w_{k}=\mathbf{0} \tag{2}
\end{equation*}
$$

Apply f to both sides of (2) and use the linearity of f and the result of Problem (2) to get that

$$
d f(u)+c_{1} f\left(w_{1}\right)+c_{2} f\left(w_{2}\right)+\cdots+c_{k} f\left(w_{k}\right)=0
$$

or

$$
d\|u\|^{2}=0
$$

since $w_{1}, w_{2}, \ldots, w_{k} \in \mathcal{N}_{f}$. We therefore conclude that $d=0$ because $u \neq \mathbf{0}$. Hence, (2) becomes

$$
c_{1} w_{1}+c_{2} w_{2}+\cdots+c_{k} w_{k}=\mathbf{0}
$$

which implies that $c_{1}=c_{2}=\cdots=c_{k}=0$, since the set

$$
\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}
$$

is linearly independent. We have therefore shown that the vector equation in (2) has only the trivial solution and therefore the set $\left\{u, w_{1}, w_{2}, \ldots, w_{k}\right\}$ is linearly independent. Since this set also spans $\mathbb{R}^{n},\left\{u, w_{1}, w_{2}, \ldots, w_{k}\right\}$ is a basis for \mathbb{R}^{n} and therefore

$$
1+k=n
$$

from which we get that $k=n-1$, or

$$
\operatorname{dim}\left(\mathcal{N}_{f}\right)=n-1
$$

in the case $u \neq \mathbf{0}$.

