Assignment \#17

Due on Wednesday, November 12, 2014
Read Section 4.3 on Matrix Representation of Linear Functions in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 2.2 on Linear Transformations between Finite Dimensional Vector Spaces in Damiano and Little (pp. 73-81)
Read Section 2.3 on Kernel and Image in Damiano and Little (pp. 84-92)
Do the following problems

1. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a function satisfying

$$
f\binom{1}{0}=\binom{-2}{3}, f\binom{0}{1}=\binom{5}{1} \text { and } f\binom{1}{1}=\binom{3}{2} .
$$

(a) Show that f cannot be linear.
(b) What would $f\binom{1}{1}$ be if f was a linear function?
2. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear function satisfying

$$
T\binom{2}{1}=\left(\begin{array}{r}
2 \\
3 \\
-1
\end{array}\right) \quad \text { and } \quad T\binom{1}{2}=\left(\begin{array}{r}
-5 \\
1 \\
1
\end{array}\right)
$$

(a) Find the matrix representation for T relative to the standard bases in \mathbb{R}^{2} and \mathbb{R}^{3}.
(b) Give formula for computing $T\binom{x}{y}$ for any $\binom{x}{y}$ in \mathbb{R}^{2}.
(c) Compute $T\binom{4}{7}$.
3. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ denote the linear transformation defined in Problem ??.
(a) Determine the image, $\mathcal{I}_{T}=\left\{w \in \mathbb{R}^{3} \mid w=T(v)\right.$ for some $\left.v \in \mathbb{R}^{2}\right\}$, of T.
(b) Find a basis for \mathcal{I}_{T} and compute $\operatorname{dim}\left(\mathcal{I}_{T}\right)$.
4. The projection $P_{u}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ onto the direction of the unit vector u in \mathbb{R}^{3} is given by

$$
P_{u}(v)=\langle v, u\rangle u \quad \text { for all } v \in \mathbb{R}^{3},
$$

where $\langle\cdot, \cdot\rangle$ denotes the Euclidean inner product in \mathbb{R}^{3}. We proved in class that P_{u} is a linear function.
(a) For $u=\frac{1}{\sqrt{3}}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$, give the matrix representation for P_{u} relative to the standard basis in \mathbb{R}^{3}.
(b) For u as defined in the previous part, determine the null space,

$$
\mathcal{N}_{P_{u}}=\left\{v \in \mathbb{R}^{3} \mid P_{u}(v)=\mathbf{0}\right\},
$$

of P_{u}.
(c) Find a basis for $\mathcal{N}_{P_{u}}$ and compute $\operatorname{dim}\left(\mathcal{N}_{P_{u}}\right)$.
5. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $R: \mathbb{R}^{m} \rightarrow \mathbb{R}^{k}$ denote two linear functions. The composition of R and T, denoted by $R \circ T$, is the function $R \circ T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ defined by

$$
R \circ T(v)=R(T(v)) \quad \text { for all } \quad v \in \mathbb{R}^{n} .
$$

(a) Prove that the composition $R \circ T$ is a linear function from \mathbb{R}^{n} to \mathbb{R}^{k}.
(b) Show that $\mathcal{N}_{T} \subseteq \mathcal{N}_{R \circ T}$.
(c) Show that $\mathcal{I}_{R \circ T} \subseteq \mathcal{I}_{R}$.

